China Custom CHINAMFG CHINAMFG Quality Stud Track Cam Followers Needle Roller Bearings CF20-1b, Kr47, CF20-1buu, Kr47PP, Mcfr47sbx

Product Description

 

Product Description

Product Name Tracker roller bearing, Cam follower bearing
Precision Rating P6, P0, P5, P4, P2
Material Bearing Steel (GCr15)
Clearance  C1 C2 C3 
Vibration & Noisy Z1, Z2, Z3 V1, V2, V3
Features Inch Size, with Eccentric Collar, with Hexagon Hole
Application Machine Tools, Auto Parts, Power Generators,and other Industrial Applications
Certification ISO 9001: 2008
Packing 1. Neutral Packing Bearing 2. Industrial Packing 3. Commercial Packing Bearing 4. Customize

 

Product Parameters

 

IKO   IKO   Mcgill D d C B1 B2   G G1          
CF04B KR12 CF4BUU KR12PP MCFR12SBX 12 4 8 20 11 M4X0.7 6 0.08 210 220
CF05B KR13 CF5BUU KR13PP MCFR13SBX 13 5 9 23 13 M5X0.8 7.5 0.23 260 280
CF06B KR16 CF6BUU KR16PP MCFR16SBX 16 6 11 28 16 M6X1 8 0.3 370 400
CF08B KR19 CF8BUU KR19PP MCFR19SBX 19 8 11 32 20 M8X1.25 10 0.8 430 630
CF10B KR22 CF10BUU KR22PP MCFR22SBX 22 10 12 36 23 M10X1.25 12 1.2 550 670
CF10-1B KR26 CF10-1BUU KR26PP MCFR26SBX 26 10 12 36 23 M10X1.25 12 1.2 550 670
CF12B KR30 CF12BUU KR30PP MCFR30SBX 30 12 14 40 25 6 M12X1.5 13 6 3 2.2 810 900
CF12-1B KR32 CF12-1BUU KR32PP MCFR32SBX 32 12 14 40 25 6 M12X1.5 13 6 3 2.2 810 900
CF16B KR35 CF16BUU KR35PP MCFR35SBX 35 16 18 52 32.5 8 M16X1.5 17 6 3 5.8 1230 1560
CF18B KR40 CF18BUU KR40PP MCFR40SBX 40 18 20 58 36.5 8 M18X1.5 19 6 3 8.5 1500 2500
CF20-1B KR47 CF20-1BUU KR47PP MCFR47SBX 47 20 24 66 40.5 9 M20X1.5 21 8 4 12 2110 3140
CF20B KR52 CF20BUU KR52PP MCFR52SBX 52 20 29 66 40.5 9 M20X1.5 21 8 4 12 2110 3140
CF24B KR62 CF24BUU KR62PP MCFR62SBX 62 24 29 80 49.5 11 M24X1.5 25 8 4 22 3110 3840
CF24-1B KR72 CF24-1BUU KR72PP MCFR72SBX 72 24 29 80 49.5 11 M24X1.5 25 8 4 22 3110 3840
CF30B KR80 CF30BUU KR80PP MCFR80SBX 80 30 35 100 63 15 M30X1.5 32 8 4 46 4630 6300
CF30-1B KR85 CF30-1BUU KR85PP MCFR85SBX 85 30 35 100 63 15 M30X1.5 32 8 4 46 4630 6300
CF30-2B KR90 CF30-2BUU KR90PP MCFR90SBX 90 30 35 100 63 15 M30X1.5 32 8 4 46 4630 6300

 

 

 

Workshop

 

Packaging & Shipping

Bearings Package:

    1):Inner Plastic Bag+ Paper Box + Carton(+Pallet)

    2):Small sizes:Plastic Tube + Carton

    3):Big sizes:Wooden Case

 

Bearings Lead time:

   We will prepare your order as soon as possible

    1)2-3 days for ex-stock

    2)7-20 days for others

 

 Shipping & Delivery time:

   1) Less than 45 Kg:DHL TNT Fedex UPS express will be better,( 4-7 days delivered to your address)

   2) Between 45 to 200 Kg:Air transiportation will be better,( 5-14 days delivered to your airport)

   3) Over 200 Kg:Sea transportation will be better.( Cheapest,18-45 days to your port ).

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Rows Number: Single
Material: Gcr15
Precision: P0 P6 P5 P4 P2
Clearance: C0 C2 C3 C4 C5
Vibration: Z1V1 Z2V2 Z3V3
Lubricated: Oil or Grease
Customization:
Available

|

cam roller

What are the signs that indicate a need for cam roller replacement or maintenance, and how can they be diagnosed?

Proper maintenance and timely replacement of cam rollers are essential for ensuring their optimal performance and longevity. Several signs indicate the need for cam roller replacement or maintenance, and diagnosing these signs can help identify potential issues. Here are some common signs and diagnostic methods:

  • Abnormal Noise: Unusual or excessive noise during the operation of cam rollers can indicate problems. Grinding, squeaking, or rattling sounds may suggest issues such as worn bearings, misalignment, or insufficient lubrication. Conduct a thorough inspection and listen for any abnormal noise while the cam rollers are in motion.
  • Irregular Motion: If the cam rollers exhibit irregular or jerky motion instead of smooth and consistent rolling, it may indicate problems. This can be caused by misalignment, damaged cam profiles, worn bearings, or debris accumulation. Observe the motion of the cam rollers carefully to detect any irregularities or inconsistencies.
  • Inconsistent Tracking: Cam rollers should provide accurate and consistent tracking of objects or components along the designated path. If there are deviations or errors in the tracking, it may indicate misalignment, worn cam profiles, damaged rollers, or track irregularities. Monitor the tracking performance of the cam rollers and check for any inconsistencies or deviations from the desired path.
  • Excessive Wear: Visual inspection of the cam rollers can reveal signs of excessive wear. Check for signs such as worn or flattened surfaces, pitting, cracks, or deformation. Excessive wear can occur due to high loads, misalignment, inadequate lubrication, or prolonged usage. Regularly inspect the cam rollers for any visible signs of wear or damage.
  • Uneven Load Distribution: Improper load distribution across the cam rollers can lead to premature wear or failure. Inspect the cam rollers and associated components for any signs of uneven loading, such as uneven wear patterns, excessive wear on specific rollers, or track distortions. Uneven load distribution may result from misalignment, damaged components, or improper installation.
  • Increased Friction: Excessive friction during the rolling motion of cam rollers can impair their performance and lead to accelerated wear. Monitor the rolling motion and check for signs of increased friction, such as resistance, overheating, or uneven movement. Excessive friction can be caused by misalignment, inadequate lubrication, debris accumulation, or worn components.
  • Loss of Efficiency: A decrease in the efficiency of the cam roller system can indicate underlying issues. If the system requires more power, shows reduced speed, or exhibits decreased accuracy compared to its normal operation, it may indicate problems with the cam rollers. Monitor the system’s performance and compare it with the expected efficiency to identify any loss in performance.

When diagnosing these signs, it is important to follow manufacturer guidelines and recommended maintenance procedures. Diagnostic methods may include visual inspection, listening for abnormal sounds, measuring performance parameters, checking alignment, conducting lubrication analysis, or consulting with qualified technicians or maintenance professionals.

Regular maintenance and inspection schedules should be established to monitor the condition of cam rollers. By identifying signs of wear, misalignment, or other issues early on, timely maintenance or replacement can be performed to prevent further damage, maintain optimal performance, and extend the lifespan of the cam roller system.

cam roller

How do cam rollers contribute to precise and controlled motion in machinery?

Cam rollers play a significant role in ensuring precise and controlled motion in various machinery applications. Their design and functionality contribute to accurate tracking, smooth operation, and controlled movement. Here’s a detailed explanation of how cam rollers contribute to precise and controlled motion in machinery:

  • Cam Profile Following: Cam rollers are specifically designed to follow the profile of a cam or track. The outer ring of the cam roller is shaped to match the contour of the cam surface. As the cam rotates or moves, the cam roller maintains contact with the cam profile, ensuring precise tracking and controlled motion along the desired path. This cam profile following capability enables machinery to achieve accurate and repeatable motion.
  • Rolling Motion: Cam rollers utilize rolling motion to traverse the cam profile. The rolling motion reduces friction compared to sliding or rubbing contact, resulting in smoother operation and improved energy efficiency. The rolling action of cam rollers allows for controlled movement with minimal resistance, ensuring precise motion and minimizing wear and tear.
  • Load Distribution: Cam rollers are designed to distribute the applied load evenly among the rolling elements. This load distribution capability minimizes stress concentrations and prevents excessive wear on individual rollers. By distributing the load effectively, cam rollers contribute to maintaining precise and controlled motion without compromising performance or causing premature failure.
  • High Rigidity: Cam rollers are constructed to provide high rigidity, which is vital for precise and controlled motion. The materials and design of cam rollers ensure minimal deformation or flexing during operation, allowing for accurate positioning and controlled movement. The high rigidity of cam rollers enables machinery to maintain tight tolerances and achieve the desired motion without unwanted deviations.
  • Roller Retainers: Some cam roller designs incorporate roller retainers or cages that hold the rolling elements in place and maintain proper spacing. These retainers prevent roller skewing and ensure controlled movement by guiding the rollers along the cam profile. The use of roller retainers enhances precision and eliminates the risk of roller misalignment, contributing to precise and controlled motion in machinery.
  • Precision Bearings: Cam rollers are equipped with precision bearings that provide smooth rolling motion and reduce internal friction. These bearings are designed to handle both radial and axial loads, ensuring stable and controlled motion in various directions. The precision bearings in cam rollers contribute to the overall precision and controlled movement of the machinery.

By incorporating these design features and functionalities, cam rollers contribute to precise and controlled motion in machinery. They enable accurate tracking of cam profiles, utilize rolling motion with reduced friction, distribute loads evenly, provide high rigidity, use roller retainers for proper alignment, and utilize precision bearings for smooth operation. All these factors work together to ensure precise positioning, controlled movement, and reliable performance in a wide range of machinery applications.

In summary, cam rollers contribute to precise and controlled motion in machinery through their cam profile following capability, rolling motion, load distribution, high rigidity, roller retainers, and precision bearings. These features enable machinery to achieve accurate positioning, smooth operation, and controlled movement, resulting in improved performance and productivity.

cam roller

How does the design of a cam roller contribute to efficient motion and tracking?

The design of a cam roller plays a crucial role in ensuring efficient motion transmission and tracking along the surface profile of a cam or track. Various design features are incorporated to optimize performance, reliability, and smooth operation. Here’s a detailed explanation of how the design of a cam roller contributes to efficient motion and tracking:

  • Bearing Element: The choice of the bearing element, such as cylindrical rollers, needle rollers, or ball bearings, is a critical design consideration. The bearing element should be selected based on the specific application requirements, including load capacity, speed, and precision. The bearing element allows for smooth rolling motion and efficient load distribution, minimizing friction and wear.
  • Outer Ring Profile: The outer ring of a cam roller has a profile that matches the shape of the cam or track. This design feature ensures accurate tracking and follows the contour of the cam or track surface. The outer ring provides guidance and support to the roller, allowing it to smoothly traverse the cam profile without slipping or deviating from the desired path.
  • Stud or Yoke: The stud or yoke is the component that attaches the cam roller to the moving part of the mechanical system. It is designed to provide secure attachment and proper alignment. The stud or yoke may have additional features such as threaded ends, lubrication provisions, or seals to enhance functionality and ease of maintenance.
  • Roller Retainers: In some cam roller designs, roller retainers are used to maintain proper spacing and alignment of the rollers within the outer ring. These retainers prevent roller skewing and ensure even load distribution among the rollers. By maintaining precise roller alignment, efficient motion transmission and tracking are achieved.
  • Sealing and Lubrication: Proper sealing and lubrication are essential for the efficient functioning of cam rollers. Seals prevent contaminants from entering the bearing and protect against lubricant leakage. Lubrication reduces friction and wear, ensuring smooth rolling motion. The design of cam rollers may include sealing elements and lubrication provisions to facilitate effective sealing and lubrication maintenance.

The careful consideration of these design factors contributes to efficient motion and tracking in cam rollers. When the cam roller is in operation, these design features enable it to smoothly follow the profile of the cam or track, ensuring accurate and reliable motion transmission. Efficient tracking minimizes energy losses, reduces wear, and enhances the overall performance of the mechanical system.

It is important to note that the design of a cam roller should be selected based on the specific requirements of the application. Factors such as load capacity, speed, operating conditions, and precision requirements should be taken into account to ensure optimal performance and longevity of the cam roller in the mechanical system.

In summary, the design of a cam roller, including the bearing element, outer ring profile, stud or yoke, roller retainers, sealing, and lubrication, contributes to efficient motion transmission and tracking. These design features enable smooth rolling motion, accurate tracking along the cam profile, and reliable performance in various mechanical systems.

China Custom CHINAMFG CHINAMFG Quality Stud Track Cam Followers Needle Roller Bearings CF20-1b, Kr47, CF20-1buu, Kr47PP, Mcfr47sbx  China Custom CHINAMFG CHINAMFG Quality Stud Track Cam Followers Needle Roller Bearings CF20-1b, Kr47, CF20-1buu, Kr47PP, Mcfr47sbx
editor by CX 2024-04-11