China best Nylon Wheel High Speed Open Garage Door Roller Without Stem

Product Description

Product Description

Nylon Wheel High Speed Open Garage Door Roller Without Stem

Style Nylon/Steel Roller
Size Custom size 
Available Material Custom Material
Application For Sectional Garage Door
Bearing Bearing
Sample Time  7 days
Devliery time  30-45days.
For more information visit: 

Company Profile

HangZhou Xihu (West Lake) Dis. CHINAMFG Hardware Co.,LTD is a professional manufacturer of Garage Door Fitting Parts.
We provide customers with various types of garage door fitting parts.
Like angle iron,cable drum,bracket,hinge,roller and so on.  We support OEM&ODM, like processing methods, materials, surface treatment, package, customer logo and so on.
Now our products are exported to many countries, we win the client’s trust through the spirit of honesty and respect.

Detailed Photos

Work Shop

 

Packaging & Shipping

Package 1)Standard packaging,2) Pallet or container, 3) According to customized specifications.
Delivery Time 30-45days.(Based on your quantity and product precision)
Logistics According to customer requirements.

 

FAQ

Q1:What’s the delivery time?
A:Generally 30-45 days after payment received.The exact time is according to actual QTY.

Q2:Can i get sample?
A:Yes.Normally we can offer the samples for free charge if we have in stock but you need to pay shipping fee.

Q3:Can you stamp the customers’ own logo and their own package?
A:Sure!We provide OEM&ODM service.

Q4:Could i get a discounted price?
A:Yes.If you have a big qty of order,we would give a discount.

Q5:What’s the payment term?
A:Payment =$3000,30% T/T in advance,70% before shippment.

Q6:Where’s the port of shipment?
A:HangZhou and ZheJiang .
  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: 1 Year
Warranty: 1 Year
Material: Nylon/Steel
Thickness: Customized
Opening Style: Manual
Opening Type: Hand Operated
Samples:
US$ 1/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

cam roller

How do electronic or computer-controlled components integrate with cam rollers in modern applications?

In modern applications, electronic or computer-controlled components play a significant role in integrating with cam rollers to enhance functionality, precision, and automation. The integration of electronic or computer-controlled components with cam rollers enables advanced control, monitoring, and synchronization of the motion system. Here’s a detailed explanation of how electronic or computer-controlled components integrate with cam rollers in modern applications:

  • Sensor Integration: Electronic sensors can be integrated with cam rollers to provide real-time feedback on various parameters such as position, speed, acceleration, and load. Position sensors, such as encoders or linear displacement sensors, can be used to precisely determine the position of the cam rollers and the objects or components they are tracking. This information can then be used for closed-loop control, ensuring accurate tracking and motion control.
  • Control Systems: Electronic or computer-controlled systems can be employed to manage the operation of cam rollers. These control systems can receive input from sensors and use algorithms to calculate the desired motion profiles. They can then generate signals to drive motors or actuators that control the movement of the cam rollers. By integrating control systems, precise motion control, synchronization, and programmability can be achieved, enabling complex motion sequences and adaptive tracking capabilities.
  • Communication Protocols: Electronic or computer-controlled components can utilize various communication protocols to exchange data and commands with other system components. For example, in industrial automation applications, cam rollers may be integrated into a larger control network using protocols such as Modbus, CAN bus, or Ethernet. This integration enables seamless communication, coordination, and synchronization with other components or systems, enhancing overall system performance and functionality.
  • Human-Machine Interface (HMI): In applications where human interaction is involved, electronic or computer-controlled components can provide a user interface for monitoring and controlling the cam rollers. This interface can include touch screens, graphical displays, or control panels that allow operators to set parameters, monitor performance, and adjust settings as needed. The integration of HMIs with cam rollers simplifies operation, facilitates troubleshooting, and enhances user experience.
  • Data Logging and Analysis: Electronic or computer-controlled components can capture and log data related to the operation of cam rollers and the overall tracking system. This data can include parameters such as position, speed, acceleration, forces, and system status. By analyzing this data, performance trends, anomalies, and optimization opportunities can be identified. The integration of data logging and analysis capabilities enables proactive maintenance, performance optimization, and continuous improvement of the cam roller system.
  • Integration with Automation Systems: In automated systems, electronic or computer-controlled components can integrate cam rollers into the overall automation framework. This integration allows for seamless coordination with other automated processes, robotics, or material handling systems. By integrating cam rollers with automation systems, precise tracking, synchronized motion, and efficient production workflows can be achieved.

The integration of electronic or computer-controlled components with cam rollers brings advanced capabilities to modern applications. It enables precise control, adaptive tracking, real-time monitoring, data-driven optimization, and seamless integration with automation systems. This integration enhances the functionality, flexibility, and efficiency of cam roller systems, opening up possibilities for a wide range of applications in industries such as manufacturing, robotics, packaging, material handling, and more.

cam roller

What advantages do cam rollers offer compared to other tracking components?

Cam rollers offer several advantages compared to other tracking components, making them a preferred choice in many applications. Their unique design and features provide distinct benefits that contribute to improved performance, reliability, and efficiency. Here’s a detailed explanation of the advantages that cam rollers offer compared to other tracking components:

  • Precision Tracking: Cam rollers are specifically designed to follow the profile of a cam or track with high precision. The cam profile following capability ensures accurate tracking along the desired path, allowing for precise positioning and controlled motion. Other tracking components may not provide the same level of precision, leading to deviations or inaccuracies in the motion system.
  • Rolling Motion: Cam rollers utilize rolling motion, where the rolling elements rotate instead of sliding or rubbing against the track. This rolling action reduces friction, resulting in smoother operation, improved energy efficiency, and reduced wear on both the cam roller and the track. In contrast, components that rely on sliding or rubbing contact may experience higher friction, leading to increased wear and decreased efficiency.
  • Load Distribution: Cam rollers distribute the applied load evenly among the rolling elements. This load distribution capability minimizes stress concentrations and ensures that no single point bears an excessive load. As a result, cam rollers can handle higher loads while maintaining stability and longevity. Other tracking components may experience localized stress concentrations, leading to premature wear or failure under heavy loads.
  • High Rigidity: Cam rollers are designed to provide high rigidity, allowing for accurate positioning and controlled motion. The materials and construction of cam rollers ensure minimal flexing or deformation during operation, maintaining tight tolerances and preventing unwanted deviations. In comparison, some other tracking components may exhibit lower rigidity, leading to less precise motion and increased susceptibility to external forces.
  • Wide Range of Configurations: Cam rollers are available in various configurations, such as stud-type cam rollers and yoke-type cam rollers, to accommodate different attachment and mounting requirements. This versatility makes them suitable for a wide range of applications and machinery configurations. In contrast, some other tracking components may have limited options or may not offer the same level of adaptability to diverse mounting or attachment needs.
  • Cost-Effectiveness: Cam rollers are generally cost-effective solutions for motion tracking. They offer a good balance between performance and cost, making them a preferred choice in many applications. Their durability, reliability, and long service life contribute to overall cost savings by minimizing maintenance, replacement, and downtime expenses. Other tracking components with similar performance characteristics may be more expensive or may not provide the same level of reliability.

By offering precision tracking, rolling motion, load distribution, high rigidity, versatile configurations, and cost-effectiveness, cam rollers stand out as advantageous tracking components in comparison to other alternatives. These advantages make cam rollers suitable for a wide range of applications, including machinery, conveyors, material handling systems, and automation equipment.

In summary, cam rollers offer distinct advantages compared to other tracking components. Their precision tracking, rolling motion, load distribution, high rigidity, versatile configurations, and cost-effectiveness contribute to improved performance, reliability, and efficiency in motion systems.

cam roller

What are the different types and configurations of cam rollers available in the market?

Cam rollers, also known as cam followers or track rollers, are available in various types and configurations to suit different applications and requirements. The selection of the appropriate type and configuration depends on factors such as load capacity, speed, operating conditions, and specific application needs. Here’s a detailed explanation of the different types and configurations of cam rollers available in the market:

  • Stud-Type Cam Rollers: Stud-type cam rollers have a stud or bolt that extends from the roller’s outer ring. The stud allows for secure attachment to the moving part of the mechanical system. Stud-type cam rollers are commonly used in applications that require high radial loads and moderate thrust loads, such as camshaft followers in engines or support rollers in conveyor systems.
  • Yoke-Type Cam Rollers: Yoke-type cam rollers have a yoke or mounting flange that provides a broader surface area for attachment. The yoke is typically bolted or clamped to the moving component. Yoke-type cam rollers are suitable for applications with higher radial and axial loads, such as in heavy machinery or industrial automation systems.
  • Full Complement Cam Followers: Full complement cam followers have a design that incorporates a maximum number of rolling elements, providing high load-carrying capacity. These cam rollers do not have a cage or roller retainer, allowing for more rollers to be included. Full complement cam followers are commonly used in applications where maximum load capacity is required, but speed and precision may be lower priority.
  • Caged Cam Followers: Caged cam followers have a cage or roller retainer that separates and guides the rolling elements. The cage maintains proper spacing and alignment of the rollers. Caged cam followers offer advantages such as reduced friction, improved speed capability, and better roller control. They are suitable for applications that require higher speeds, precision, and controlled roller movement.
  • Hexagonal Bore Cam Followers: Hexagonal bore cam followers have a hexagonal-shaped inner bore instead of a cylindrical bore. This design allows for direct tightening using a hexagonal wrench, simplifying installation and adjustment. Hexagonal bore cam followers are commonly used in applications where frequent adjustment or repositioning is required, such as in printing machinery or packaging equipment.
  • Stud-Type with Eccentric Collar: This type of cam roller features a stud with an eccentric collar. The eccentric collar allows for easy adjustment of the roller’s position by rotating the collar, providing a simple means of adjusting the preload or clearance in the system. Stud-type cam rollers with eccentric collars are commonly used in applications that require precise adjustment, such as in tensioning systems or in machinery with adjustable clearances.

These are some of the commonly available types and configurations of cam rollers in the market. Each type offers specific advantages and is designed to meet the demands of different applications. It is important to consider factors such as load capacity, speed requirements, precision, and specific application needs when selecting the appropriate type and configuration of cam roller.

In summary, the market offers a variety of cam roller types and configurations, including stud-type, yoke-type, full complement, caged, hexagonal bore, and stud-type with eccentric collar. Each type has its own advantages and is suitable for specific applications based on load capacity, speed, precision, and adjustability requirements.

China best Nylon Wheel High Speed Open Garage Door Roller Without Stem  China best Nylon Wheel High Speed Open Garage Door Roller Without Stem
editor by Dream 2024-05-08