Tag Archives: rolling bearing

China Good quality Rolling Pin Bearing Cam Follower Bearing Heavy-Duty Stud CHINAMFG

Product Description

Product Description

 

A needle roller bearing is a special type of roller bearing which uses long, thin cylindrical rollers resembling needles. Ordinary roller bearings’ rollers are only slightly longer than their diameter, but needle bearings typically have rollers that are at least 4 times longer than their diameter.

 

Product name

neddle bearing

Condition

New

Warranty

1 year

Applicable Industries

   Building industry machinery

Video outgoing-inspection

Available

Machinery Test Report

Available

Marketing Type

New Product 2571

Warranty of core components

  1 year

Core Components

Bearing

Place of Origin

China,ZHangZhoug

Quality

Large bearing capacity,high speed,low noise.

Brand Name

CHINAMFG

Material

   Steel

service

 ODM/OEM

 

Product Parameters

Detailed Photos

 

 

 

Company Profile

Certifications

 

 

Our Advantages

FAQ

Q1: Do you have a catalogue? Can you send me the catalogue to have a check of all your products?

A: Yes , We have product catalogue.Please contact us on line or send an Email to sending the catalogue.
 

Q2: I can’t find the product on your catalogue, can you make this product for me?
A: Our catalogue shows most of our products,but not all.So just let us know what product do you need.

Q3 : Can you make customized products and customized packing?
A: Yes.We made a lot of customized products for our customer before.And we have many moulds for our customers already.About customized packing,we can put your Logo or other info on the packing.There is no problem.Just have to point out that ,it will cause some additional cost.

Q4: Can you provide samples ? Are the samples free ?
A: Yes,we can provide samples.Normally,we provide 1-2pcs free samples for test or quality checking.you have to pay for the shipping cost.If you need many items, or need more qty for each item,we will charge for the samples.

To get price list of linear gudies, please contact us.

 

 

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Cage: With Cage
Rows Number: Single
Load Direction: Radial Bearing
Style: With Outer Ring
Material: Bearing Steel
Type: Closed
Samples:
US$ 3/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

cam roller

Can you provide insights into the importance of proper installation and alignment of cam rollers?

Proper installation and alignment of cam rollers are crucial for achieving optimal performance, longevity, and reliability of the tracking system. The installation and alignment process directly impacts the functionality, efficiency, and lifespan of the cam rollers. Here are some key insights into the importance of proper installation and alignment:

  • Accurate Tracking: Proper installation ensures that the cam rollers are positioned correctly and aligned with the cam profile or track. Accurate alignment is essential for achieving precise and consistent tracking of objects or components. Even a slight misalignment can result in deviations from the desired path, causing positioning errors, reduced accuracy, and compromised system performance.
  • Smooth Motion: Correct installation and alignment play a significant role in enabling smooth and uninterrupted rolling motion of the cam rollers. Misalignment or improper installation can introduce friction, uneven loading, or binding, which can lead to jerky or erratic motion. On the other hand, proper alignment facilitates smooth and efficient rolling, minimizing energy losses, reducing wear, and ensuring seamless operation.
  • Load Distribution: Proper alignment helps distribute the load evenly among the cam rollers and the associated components. Uniform load distribution prevents excessive stress on individual rollers, bearings, or tracks, reducing the risk of premature wear, fatigue, or failure. By ensuring proper load distribution, proper installation and alignment contribute to the longevity and reliability of the cam roller system.
  • Reduced Wear and Damage: Correct installation and alignment minimize friction and wear between the cam rollers and the track. Improper alignment can cause rubbing, scraping, or uneven contact, leading to accelerated wear, surface damage, or deformation of the rollers or track. Proper alignment reduces these issues, extending the lifespan of the cam rollers and reducing the frequency of maintenance or replacements.
  • Optimized Performance: Properly installed and aligned cam rollers maximize the performance of the tracking system. When the cam rollers are aligned correctly, they can operate at their intended design parameters, ensuring efficient power transmission, accurate tracking, and smooth motion. This optimization leads to improved productivity, reduced downtime, and enhanced overall system performance.
  • Alignment Sensitivity: Cam roller systems are often sensitive to misalignment due to their precise nature. Small deviations in alignment can have a significant impact on the performance and functionality of the system. Therefore, it is crucial to follow manufacturer guidelines and recommended alignment procedures during installation to ensure proper alignment and avoid potential issues.
  • Ease of Maintenance: Proper installation and alignment facilitate easier maintenance and servicing of the cam rollers. When the cam rollers are correctly aligned, it becomes simpler to access and replace individual components, such as bearings or rollers, during routine maintenance or repairs. This reduces downtime, simplifies maintenance procedures, and ensures efficient upkeep of the tracking system.

In summary, proper installation and alignment of cam rollers are essential for achieving accurate tracking, smooth motion, load distribution, reduced wear, optimized performance, and ease of maintenance. By following proper installation procedures and ensuring precise alignment, the longevity, efficiency, and reliability of the cam roller system can be maximized, leading to improved overall system performance and longevity.

cam roller

What maintenance practices are recommended for cam rollers to ensure optimal functionality?

Proper maintenance is essential for ensuring the optimal functionality and longevity of cam rollers. Regular maintenance practices help prevent premature wear, minimize downtime, and maintain the performance of cam rollers in various applications. Here are some recommended maintenance practices for cam rollers:

  • Cleaning: Regularly clean the cam rollers to remove dust, dirt, and debris that can accumulate on the rolling surfaces. Use a soft brush or compressed air to clean the cam rollers, ensuring that no contaminants hinder their smooth operation.
  • Lubrication: Apply appropriate lubrication to the cam rollers to reduce friction and wear. Use lubricants recommended by the manufacturer, ensuring they are compatible with the materials and operating conditions of the cam rollers. Regularly check the lubrication levels and replenish as needed.
  • Inspection: Perform routine visual inspections of the cam rollers to check for any signs of wear, damage, or misalignment. Look for excessive play, deformation, or any irregularities that may affect their performance. If any issues are identified, take appropriate measures such as adjustments, repairs, or replacements.
  • Tightening: Check the fasteners, such as bolts or screws, that secure the cam rollers to the equipment or mounting surfaces. Ensure that they are properly tightened to prevent loosening during operation, which could lead to misalignment or reduced performance.
  • Alignment: Check the alignment of the cam rollers periodically to ensure they are properly aligned with the cam or track they are following. Misalignment can lead to increased wear, reduced accuracy, and decreased lifespan of the cam rollers. Adjust the alignment as necessary to maintain optimal functionality.
  • Load Distribution: Monitor the load distribution among the rolling elements of the cam rollers. Ensure that the load is evenly distributed to prevent overloading or excessive stress on individual rolling elements. Uneven load distribution can lead to premature wear or failure of the cam rollers.
  • Environmental Considerations: Consider the specific environmental conditions in which the cam rollers operate. Take appropriate measures to protect the cam rollers from corrosive substances, extreme temperatures, excessive moisture, or other environmental factors that may affect their performance. Use protective coatings, seals, or covers as needed.
  • Replacement: Cam rollers have a finite lifespan, and eventually, they will need to be replaced. Monitor the wear and performance of the cam rollers over time. When signs of significant wear, damage, or reduced functionality are observed, plan for timely replacement to avoid unexpected failures or disruptions in the operation.

It is important to note that maintenance practices may vary depending on the specific design, materials, and operating conditions of the cam rollers. Therefore, it is recommended to refer to the manufacturer’s guidelines and recommendations for maintenance specific to the cam rollers being used.

By following these maintenance practices and adopting a preventive maintenance approach, operators can ensure the optimal functionality, reliability, and longevity of cam rollers in various applications.

cam roller

What is a cam roller, and how is it utilized in mechanical systems?

A cam roller, also known as a cam follower or track roller, is a specialized type of roller bearing used in mechanical systems. It is designed to follow the surface profile of a cam or track and transmit motion or force between the cam and a moving component. Here’s a detailed explanation of what a cam roller is and how it is utilized in mechanical systems:

A cam roller consists of a cylindrical roller, needle roller, or ball bearing that is mounted in a stud or yoke. The stud or yoke provides a means of attachment to the moving component of the mechanical system. The roller or bearing element is housed within a thick-walled outer ring, which serves as a guide and support for the roller. The outer ring has a profile that matches the shape of the cam or track over which the cam roller operates.

The primary function of a cam roller is to convert rotary motion into linear motion or vice versa. As the cam or track rotates, the cam roller follows the profile, causing the roller to move along the track. This motion can be utilized in various ways depending on the specific application. Here are some common uses of cam rollers in mechanical systems:

  • Motion Transmission: Cam rollers are often used to transmit motion from a rotating cam to a reciprocating or oscillating component. For example, in engines, cam followers are used to transfer the motion of the camshaft to the valves, opening and closing them at the appropriate timing.
  • Guiding and Support: Cam rollers can also provide guidance and support to moving components in a mechanical system. They help maintain proper alignment and prevent lateral movement or deflection. This is particularly useful in applications such as conveyor systems, where cam rollers guide the movement of belts or chains.
  • Load Bearing: Cam rollers are designed to withstand high loads and provide support to heavy-duty applications. They are often used in machinery and equipment where there is a need for reliable load-bearing capabilities. Examples include construction machinery, material handling equipment, and industrial automation systems.
  • Compensating for Misalignment: In some applications, cam rollers are utilized to compensate for misalignment between components. The rolling motion of the cam follower allows it to adjust and accommodate slight deviations in the cam or track profile, ensuring smooth operation even in imperfect conditions.

The choice of cam roller design, size, and material depends on the specific requirements of the application. Factors such as load capacity, speed, operating conditions, and precision requirements are taken into consideration when selecting the appropriate cam roller. Regular maintenance, including lubrication and inspection of the cam roller, is important to ensure its proper functioning and longevity in the mechanical system.

In summary, a cam roller is a specialized type of roller bearing used in mechanical systems to transmit motion, provide guidance and support, bear loads, and compensate for misalignment. Its ability to follow the profile of a cam or track allows for efficient conversion of rotary motion to linear motion or vice versa. Cam rollers find application in a wide range of industries and play a crucial role in ensuring the smooth and reliable operation of mechanical systems.

China Good quality Rolling Pin Bearing Cam Follower Bearing Heavy-Duty Stud CHINAMFG  China Good quality Rolling Pin Bearing Cam Follower Bearing Heavy-Duty Stud CHINAMFG
editor by Dream 2024-05-16

China Professional 608z Bearing Coated Pulley Rolling Wheel CNC Nylon Machining U Slot Concave Guide Wheel Roller

Product Description

Product Description

Polyformaldehyde Coated Ball Bearings is high speed bearing.It is waterproof without grease.When we using the bearing in water,the bearing’s rotating speed is more high than using in air.All specifications and all types of non-standard plastic bearings can be produce in our factory.All details will according to your requirements and drawing.

Function: door and window sheave, track wheel, limit wheel, pulley wheel.

Features:
(1) rigidity,high hardness,even at low temperatures,high impact strength
(2) good excellent elasticity,creep resistance
(3) high thermal stability and very good dimensional stability
(4)good sliding properties wear resistance
(5) physiologically inert suitable for contact with food

Product Parameters

Technical specification

Material: Bearing Steel / Stainless Steel + POM/Nylon

 

 

Packaging & Shipping

 

Our Advantages

1. We have over 10 years’ experience.
2. OEM or Non-Standard Bearings: Any requirement for Non-standard bearings is easily fulfilled by us due to our vast knowledge and links in the industry.
3. After Sales Service and Technical Assistance: Our company provides after-sales service and technical assistance as per the customer’s requirements and needs.
4. Quick Delivery: Our company provides just-in-time delivery with our streamlined supply chain.
5.We attend promptly to any customer questions. We believe that if our customers are satisfied then it proves our worth. Our customers are always given quick support.                              

Please contact us immediately if you have any questions.
 

Related Products

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Aligning: Non-Aligning Bearing
Separated: Unseparated
Rows Number: Single
Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

cam roller

How do cam rollers contribute to the adaptability and versatility of tracking systems in various settings?

Cam rollers play a significant role in enhancing the adaptability and versatility of tracking systems across various settings. Their design and functionality enable them to meet the diverse requirements of different applications. Here’s a detailed explanation of how cam rollers contribute to the adaptability and versatility of tracking systems:

  • Multiple Track Configurations: Cam rollers can be utilized in various track configurations, such as linear tracks, curved tracks, or complex multi-axis tracks. This flexibility allows tracking systems to adapt to different motion patterns and trajectories required by different applications. Whether it’s a straight-line motion, circular path, or customized multi-axis motion, cam rollers can be configured to accommodate a wide range of tracking requirements.
  • Adjustable Cam Profiles: The design of cam rollers allows for adjustable cam profiles. Cam profiles determine the motion characteristics of the tracking system, including acceleration, deceleration, and dwell periods. By modifying the cam profiles, cam rollers can be customized to suit specific application needs. This adjustability enhances the adaptability of tracking systems, enabling them to handle different speed profiles, motion sequences, or tracking patterns.
  • Modular and Scalable Design: Cam rollers are often designed with a modular and scalable approach, allowing for easy integration into different systems and the ability to scale up or down based on application requirements. They can be combined with other components, such as motors, gearboxes, or sensors, to create a complete tracking system. This modular design facilitates the adaptability and versatility of tracking systems, enabling customization and quick reconfiguration as per changing needs.
  • Wide Range of Load Capacity: Cam rollers are available in various sizes and configurations, offering a wide range of load capacities. From lightweight applications to heavy-duty industrial settings, cam rollers can handle different loads and forces. This versatility allows tracking systems to adapt to diverse payload requirements, making them suitable for applications ranging from small-scale automation to large-scale material handling.
  • Compatibility with Different Environments: Cam rollers are designed to operate in various environmental conditions. They can withstand factors like temperature variations, dust, moisture, and contaminants commonly found in industrial or outdoor settings. This compatibility with different environments enhances the adaptability of tracking systems, enabling their deployment in diverse industries such as manufacturing, logistics, automotive, and aerospace.
  • Integration with Control Systems: Cam rollers can be seamlessly integrated with electronic or computer-controlled components, such as sensors, actuators, or programmable logic controllers (PLCs). This integration allows for precise control, synchronization, and automation of tracking systems. By incorporating control systems, cam rollers can adapt to dynamic operating conditions, respond to real-time feedback, and enable advanced tracking functionalities.
  • Compatibility with Various Object Shapes and Sizes: Cam rollers are designed to accommodate a wide range of object shapes, sizes, and materials. They can track objects of different geometries, from flat panels to irregularly shaped components. This compatibility with various object characteristics enhances the versatility of tracking systems, enabling them to handle diverse workpieces, products, or materials.

The adaptability and versatility of tracking systems are significantly enhanced by the use of cam rollers. Their ability to work with different track configurations, adjust cam profiles, modular design, load capacity, environmental compatibility, integration with control systems, and compatibility with various object shapes and sizes makes them a valuable component in a wide range of applications, providing adaptability, flexibility, and versatility to tracking systems in diverse settings.

cam roller

What maintenance practices are recommended for cam rollers to ensure optimal functionality?

Proper maintenance is essential for ensuring the optimal functionality and longevity of cam rollers. Regular maintenance practices help prevent premature wear, minimize downtime, and maintain the performance of cam rollers in various applications. Here are some recommended maintenance practices for cam rollers:

  • Cleaning: Regularly clean the cam rollers to remove dust, dirt, and debris that can accumulate on the rolling surfaces. Use a soft brush or compressed air to clean the cam rollers, ensuring that no contaminants hinder their smooth operation.
  • Lubrication: Apply appropriate lubrication to the cam rollers to reduce friction and wear. Use lubricants recommended by the manufacturer, ensuring they are compatible with the materials and operating conditions of the cam rollers. Regularly check the lubrication levels and replenish as needed.
  • Inspection: Perform routine visual inspections of the cam rollers to check for any signs of wear, damage, or misalignment. Look for excessive play, deformation, or any irregularities that may affect their performance. If any issues are identified, take appropriate measures such as adjustments, repairs, or replacements.
  • Tightening: Check the fasteners, such as bolts or screws, that secure the cam rollers to the equipment or mounting surfaces. Ensure that they are properly tightened to prevent loosening during operation, which could lead to misalignment or reduced performance.
  • Alignment: Check the alignment of the cam rollers periodically to ensure they are properly aligned with the cam or track they are following. Misalignment can lead to increased wear, reduced accuracy, and decreased lifespan of the cam rollers. Adjust the alignment as necessary to maintain optimal functionality.
  • Load Distribution: Monitor the load distribution among the rolling elements of the cam rollers. Ensure that the load is evenly distributed to prevent overloading or excessive stress on individual rolling elements. Uneven load distribution can lead to premature wear or failure of the cam rollers.
  • Environmental Considerations: Consider the specific environmental conditions in which the cam rollers operate. Take appropriate measures to protect the cam rollers from corrosive substances, extreme temperatures, excessive moisture, or other environmental factors that may affect their performance. Use protective coatings, seals, or covers as needed.
  • Replacement: Cam rollers have a finite lifespan, and eventually, they will need to be replaced. Monitor the wear and performance of the cam rollers over time. When signs of significant wear, damage, or reduced functionality are observed, plan for timely replacement to avoid unexpected failures or disruptions in the operation.

It is important to note that maintenance practices may vary depending on the specific design, materials, and operating conditions of the cam rollers. Therefore, it is recommended to refer to the manufacturer’s guidelines and recommendations for maintenance specific to the cam rollers being used.

By following these maintenance practices and adopting a preventive maintenance approach, operators can ensure the optimal functionality, reliability, and longevity of cam rollers in various applications.

cam roller

What is a cam roller, and how is it utilized in mechanical systems?

A cam roller, also known as a cam follower or track roller, is a specialized type of roller bearing used in mechanical systems. It is designed to follow the surface profile of a cam or track and transmit motion or force between the cam and a moving component. Here’s a detailed explanation of what a cam roller is and how it is utilized in mechanical systems:

A cam roller consists of a cylindrical roller, needle roller, or ball bearing that is mounted in a stud or yoke. The stud or yoke provides a means of attachment to the moving component of the mechanical system. The roller or bearing element is housed within a thick-walled outer ring, which serves as a guide and support for the roller. The outer ring has a profile that matches the shape of the cam or track over which the cam roller operates.

The primary function of a cam roller is to convert rotary motion into linear motion or vice versa. As the cam or track rotates, the cam roller follows the profile, causing the roller to move along the track. This motion can be utilized in various ways depending on the specific application. Here are some common uses of cam rollers in mechanical systems:

  • Motion Transmission: Cam rollers are often used to transmit motion from a rotating cam to a reciprocating or oscillating component. For example, in engines, cam followers are used to transfer the motion of the camshaft to the valves, opening and closing them at the appropriate timing.
  • Guiding and Support: Cam rollers can also provide guidance and support to moving components in a mechanical system. They help maintain proper alignment and prevent lateral movement or deflection. This is particularly useful in applications such as conveyor systems, where cam rollers guide the movement of belts or chains.
  • Load Bearing: Cam rollers are designed to withstand high loads and provide support to heavy-duty applications. They are often used in machinery and equipment where there is a need for reliable load-bearing capabilities. Examples include construction machinery, material handling equipment, and industrial automation systems.
  • Compensating for Misalignment: In some applications, cam rollers are utilized to compensate for misalignment between components. The rolling motion of the cam follower allows it to adjust and accommodate slight deviations in the cam or track profile, ensuring smooth operation even in imperfect conditions.

The choice of cam roller design, size, and material depends on the specific requirements of the application. Factors such as load capacity, speed, operating conditions, and precision requirements are taken into consideration when selecting the appropriate cam roller. Regular maintenance, including lubrication and inspection of the cam roller, is important to ensure its proper functioning and longevity in the mechanical system.

In summary, a cam roller is a specialized type of roller bearing used in mechanical systems to transmit motion, provide guidance and support, bear loads, and compensate for misalignment. Its ability to follow the profile of a cam or track allows for efficient conversion of rotary motion to linear motion or vice versa. Cam rollers find application in a wide range of industries and play a crucial role in ensuring the smooth and reliable operation of mechanical systems.

China Professional 608z Bearing Coated Pulley Rolling Wheel CNC Nylon Machining U Slot Concave Guide Wheel Roller  China Professional 608z Bearing Coated Pulley Rolling Wheel CNC Nylon Machining U Slot Concave Guide Wheel Roller
editor by Dream 2024-04-26

China supplier Track Roller Bearing Stud Type Cam Followers Rolling Roller Bearing

Product Description

KRVT26LL/3AS KRVT26XLL/3AS KRVT30/3AS KRVT30X/3AS KRVT30LL/3AS KRVT30XLL/3AS KRVT32/3AS KRVT32X/3AS KRVT32LL/3AS KRVT32XLL/3AS KRVT35/3AS KRVT35X/3AS KRVT35LL/3AS KRVT35XLL/3AS KRVT40/3AS KRVT40X/3AS KRVT40LL/3AS KRVT40XLL/3AS KRVT47/3AS KRVT47X/3AS KRVT47LL/3AS KRVT47XLL/3AS KRVT52/3AS KRVT52X/3AS KRVT52LL/3AS KRVT52XLL/3AS KRVT62/3AS KRVT62X/3AS KRVT62LL/3AS KRVT62XLL/3AS KRVT72/3AS KRVT72X/3AS KRVT72LL/3AS KRVT72XLL/3AS KRVT80/3AS KRVT80X/3AS KRVT80LL/3AS KRVT80XLL/3AS KRVT90/3AS KRVT90X/3AS KRVT90LL/3AS KRVT90XLL/3AS NUKR30H/3AS NUKR30XH/3AS NUKR35H/3AS NUKR35XH/3AS NUKR40H/3AS NUKR40XH/3AS NUKR47H/3AS NUKR47XH/3AS NUKR52H/3AS NUKR52XH/3AS NUKR62H/3AS NUKR62XH/3AS NUKR72H/3AS NUKR72XH/3AS NUKR80H/3AS NUKR80XH/3AS NUKR90H/3AS NUKR90XH/3AS NUKR100H/3AS NUKR100XH/3AS NUKR120H/3AS NUKR120XH/3AS NUKR140H/3AS NUKR140XH/3AS NUKR150H/3AS NUKR150XH/3AS NUKR160H/3AS NUKR160XH/3AS NUKR170H/3AS NUKR170XH/3AS NUKR180H/3AS NUKR180XH/3AS NUKR30/3AS NUKR30X/3AS NUKR35/3AS NUKR35X/3AS NUKR40/3AS NUKR40X/3AS NUKR47/3AS NUKR47X/3AS NUKR52/3AS NUKR52X/3AS NUKR62/3AS NUKR72/3AS NUKR80/3AS NUKR90/3AS NUKR100/3AS NUKR120/3AS NUKR140/3AS NUKR150/3AS NUKR160/3AS NUKR170/3AS NUKR180/3AS NUKR30X/3AS NUKR62X/3AS NUKR72X/3AS NUKR80X/3AS NUKR90X/3AS NUKR100X/3AS NUKR120X/3AS NUKR140X/3AS NUKR150X/3AS NUKR160X/3AS NUKR170X/3AS NUKR180X/3AS NUKRT30/3AS NUKRT30X/3AS NUKRT35/3AS NUKRT35X/3AS NUKRT40/3AS NUKRT40X/3AS NUKRT47/3AS NUKRT47X/3AS NUKRT52/3AS NUKRT52X/3AS NUKRT62/3AS NUKRT62/3AS NUKRT72/3AS NUKRT72X/3AS NUKRT80/3AS NUKRT80X/3AS NUKRT90/3AS NUKRT90X/3AS NUKRT100/3AS NUKRT100X/3AS NUKRT100X/3AS NUKRT120/3AS NUKRT120X/3AS NUKRT140/3AS NUKRT140X/3AS NUKRT150/3AS NUKRT150X/3AS NUKRT160/3AS NUKRT160X/3AS NUKRT160X/3AS NUKRT170X/3AS NUKRT180/3AS NUKRT180X/3AS NATR5X NATR5LL/3AS NATR5XLL/3AS NATR6LL/3AS NATR6X NATR6XLL/3AS NATR8X NATR8LL/3AS NATR8XLL/3AS NATR10X NATR10LL/3AS NATR10XLL/3AS NATR12XCT NATR12CLLT/3AS NATR12CXLLT/3AS NATR15X NATR15LL/3AS NATR15XLL/3AS NATR15XLL/3AS NATR20X NATR17X NATR17LL/3AS NATR17XLL/3AS NATR20LL/3AS NATR20XLL/3AS NATR25X NATR25LL/3AS NATR25XLL/3AS NATR30X NATR30LL/3AS NATR30XLL/3AS NATR35X NATR35LL/3AS NATR35XLL/3AS NATR40X NATR40LL/3AS NATR40XLL/3AS NATR45X NATR45LL/3AS NATR45XLL/3AS NATR50X NATR50LL/3AS NATR50XLL/3AS NATV5/3AS NATV5X/3AS NATV5LL/3AS NATV5XLL/3AS NATV6/3AS NATV6X/3AS NATV6LL/3AS NATV6XLL/3AS NATV8X/3AS NATV8X/3AS NATV8LL/3AS NATV8XLL/3AS NATV10/3AS NATV10X/3AS NATV10LL/3AS NATV10XLL/3AS NATV12/3AS NATV12X/3AS NATV12LL/3AS NATV12XLL/3AS NATV12XLL/3AS NATV15X/3AS NATV15LL/3AS NATV15XLL/3AS NATV17/3AS NATV17X/3AS NATV17LL/3AS NATV17XLL/3AS NATV20/3AS NATV20X/3AS NATV20LL/3AS NATV20XLL/3AS NATV25/3AS NATV25X/3AS NATV25LL/3AS NATV25XLL/3AS NATV30/3AS NATV30X/3AS NATV30LL/3AS NATV30XLL/3AS NATV35/3AS NATV35X/3AS NATV35LL/3AS NATV35XLL/3AS NATV40/3AS NATV40X/3AS NATV40LL/3AS NATV40XLL/3AS NATV50/3AS NATV50X/3AS NATV50LL/3AS NATV50XLL/3AS NUTR202/3AS NUTR202X/3AS NUTR203/3AS NUTR203X/3AS NUTR302/3AS NUTR303/3AS NUTR302X/3AS NUTR303X/3AS NUTR204/3AS NUTR204X/3AS NUTR304/3AS NUTR304X/3AS NUTR205/3AS NUTR205X/3AS NUTR305/3AS NUTR305X/3AS NUTR206/3AS NUTR206X/3AS NUTR306/3AS NUTR306X/3AS NUTR207/3AS NUTR207X/3AS NUTR307/3AS NUTR307X/3AS NUTR208/3AS NUTR208X/3AS NUTR209/3AS NUTR209X/3AS NUTR308/3AS NUTR308X/3AS NUTR210/3AS NUTR210X/3AS NUTR309/3AS NUTR309X/3AS NUTR310/3AS NUTR310X/3AS NUTW202/3AS NUTW203/3AS NUTW202X/3AS NUTW203X/3AS NUTW204/3AS NUTW204X/3AS NUTW205/3AS NUTW205X/3AS NUTW206/3AS NUTW206X/3AS NUTW207/3AS NUTW207X/3AS NUTW208/3AS NUTW208X/3AS NUTW209/3AS NUTW209X/3AS NUTW210/3AS NUTW210X/3AS

Product quality standards are guaranteed. Our products have got ISO 9001 & CE international quality management system. They all produced with best advanced technology.We are proactive and we offer only products complying with top standards of quality and warranty.
  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Rolling Body: Roller Bearings
The Number of Rows: Double
Outer Dimension: Small (28-55mm)
Material: Bearing Steel
Spherical: Non-Aligning Bearings
Load Direction: Thrust Bearing
Samples:
US$ 2/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

cam roller

How do cam rollers contribute to the adaptability and versatility of tracking systems in various settings?

Cam rollers play a significant role in enhancing the adaptability and versatility of tracking systems across various settings. Their design and functionality enable them to meet the diverse requirements of different applications. Here’s a detailed explanation of how cam rollers contribute to the adaptability and versatility of tracking systems:

  • Multiple Track Configurations: Cam rollers can be utilized in various track configurations, such as linear tracks, curved tracks, or complex multi-axis tracks. This flexibility allows tracking systems to adapt to different motion patterns and trajectories required by different applications. Whether it’s a straight-line motion, circular path, or customized multi-axis motion, cam rollers can be configured to accommodate a wide range of tracking requirements.
  • Adjustable Cam Profiles: The design of cam rollers allows for adjustable cam profiles. Cam profiles determine the motion characteristics of the tracking system, including acceleration, deceleration, and dwell periods. By modifying the cam profiles, cam rollers can be customized to suit specific application needs. This adjustability enhances the adaptability of tracking systems, enabling them to handle different speed profiles, motion sequences, or tracking patterns.
  • Modular and Scalable Design: Cam rollers are often designed with a modular and scalable approach, allowing for easy integration into different systems and the ability to scale up or down based on application requirements. They can be combined with other components, such as motors, gearboxes, or sensors, to create a complete tracking system. This modular design facilitates the adaptability and versatility of tracking systems, enabling customization and quick reconfiguration as per changing needs.
  • Wide Range of Load Capacity: Cam rollers are available in various sizes and configurations, offering a wide range of load capacities. From lightweight applications to heavy-duty industrial settings, cam rollers can handle different loads and forces. This versatility allows tracking systems to adapt to diverse payload requirements, making them suitable for applications ranging from small-scale automation to large-scale material handling.
  • Compatibility with Different Environments: Cam rollers are designed to operate in various environmental conditions. They can withstand factors like temperature variations, dust, moisture, and contaminants commonly found in industrial or outdoor settings. This compatibility with different environments enhances the adaptability of tracking systems, enabling their deployment in diverse industries such as manufacturing, logistics, automotive, and aerospace.
  • Integration with Control Systems: Cam rollers can be seamlessly integrated with electronic or computer-controlled components, such as sensors, actuators, or programmable logic controllers (PLCs). This integration allows for precise control, synchronization, and automation of tracking systems. By incorporating control systems, cam rollers can adapt to dynamic operating conditions, respond to real-time feedback, and enable advanced tracking functionalities.
  • Compatibility with Various Object Shapes and Sizes: Cam rollers are designed to accommodate a wide range of object shapes, sizes, and materials. They can track objects of different geometries, from flat panels to irregularly shaped components. This compatibility with various object characteristics enhances the versatility of tracking systems, enabling them to handle diverse workpieces, products, or materials.

The adaptability and versatility of tracking systems are significantly enhanced by the use of cam rollers. Their ability to work with different track configurations, adjust cam profiles, modular design, load capacity, environmental compatibility, integration with control systems, and compatibility with various object shapes and sizes makes them a valuable component in a wide range of applications, providing adaptability, flexibility, and versatility to tracking systems in diverse settings.

cam roller

Can you explain the impact of cam rollers on the overall efficiency of tracking systems?

Cam rollers play a crucial role in the overall efficiency of tracking systems. These systems rely on the precise and controlled movement of components or objects along a predetermined path, and cam rollers contribute to achieving accurate tracking, smooth motion, and reliable operation. Here’s a detailed explanation of the impact of cam rollers on the overall efficiency of tracking systems:

  • Precision Tracking: Cam rollers are designed to follow a specific cam profile or track, which allows for precise tracking of objects or components. The shape and contour of the cam determine the desired motion, and the cam rollers ensure that the objects or components move along the track with high accuracy and repeatability. This precise tracking capability enhances the overall efficiency of tracking systems by ensuring that the intended path is followed consistently.
  • Smooth Motion: Cam rollers are engineered to provide smooth rolling motion along the cam profile or track. The rolling elements of the cam rollers, such as bearings or rollers, minimize friction and enable the objects or components to glide smoothly along the track. This smooth motion reduces energy consumption, minimizes wear and tear, and enhances the overall efficiency of the tracking system by facilitating seamless movement without jerks or disruptions.
  • Reduced Wear: By distributing the load evenly and providing a rolling contact, cam rollers help reduce wear on both the rollers themselves and the track they follow. The rolling action minimizes frictional forces and wear compared to sliding or dragging mechanisms. This reduced wear extends the lifespan of the cam rollers and the tracking system components, ensuring long-term efficiency and reliability.
  • High-Speed Capability: Cam rollers are designed to operate at high speeds without compromising performance. The choice of materials, lubrication, and design factors such as stability and balance enable cam rollers to handle rapid motion and high-speed tracking requirements. Their ability to maintain accurate tracking and smooth motion even at high speeds enhances the overall efficiency of tracking systems in applications where speed is crucial.
  • Load Capacity: Cam rollers are engineered to handle varying load capacities based on their design and construction. They can support significant loads while maintaining precise tracking and smooth motion. This load-carrying capability ensures that tracking systems can accommodate different objects or components of varying weights, contributing to the overall efficiency of the system by enabling versatile and reliable operation.
  • Reliability and Durability: Cam rollers are typically designed for robustness and durability. They are built to withstand the demands of continuous operation, heavy loads, and challenging environmental conditions. The use of high-quality materials, proper lubrication, and appropriate maintenance practices ensure the reliability and longevity of cam rollers, minimizing downtime and maximizing the overall efficiency of tracking systems.

In summary, cam rollers have a significant impact on the overall efficiency of tracking systems. Their precision tracking, smooth motion, reduced wear, high-speed capability, load capacity, reliability, and durability contribute to the efficient and reliable operation of tracking systems in various applications. By incorporating well-designed and properly maintained cam rollers, tracking systems can achieve optimal performance, accuracy, and productivity.

cam roller

What is a cam roller, and how is it utilized in mechanical systems?

A cam roller, also known as a cam follower or track roller, is a specialized type of roller bearing used in mechanical systems. It is designed to follow the surface profile of a cam or track and transmit motion or force between the cam and a moving component. Here’s a detailed explanation of what a cam roller is and how it is utilized in mechanical systems:

A cam roller consists of a cylindrical roller, needle roller, or ball bearing that is mounted in a stud or yoke. The stud or yoke provides a means of attachment to the moving component of the mechanical system. The roller or bearing element is housed within a thick-walled outer ring, which serves as a guide and support for the roller. The outer ring has a profile that matches the shape of the cam or track over which the cam roller operates.

The primary function of a cam roller is to convert rotary motion into linear motion or vice versa. As the cam or track rotates, the cam roller follows the profile, causing the roller to move along the track. This motion can be utilized in various ways depending on the specific application. Here are some common uses of cam rollers in mechanical systems:

  • Motion Transmission: Cam rollers are often used to transmit motion from a rotating cam to a reciprocating or oscillating component. For example, in engines, cam followers are used to transfer the motion of the camshaft to the valves, opening and closing them at the appropriate timing.
  • Guiding and Support: Cam rollers can also provide guidance and support to moving components in a mechanical system. They help maintain proper alignment and prevent lateral movement or deflection. This is particularly useful in applications such as conveyor systems, where cam rollers guide the movement of belts or chains.
  • Load Bearing: Cam rollers are designed to withstand high loads and provide support to heavy-duty applications. They are often used in machinery and equipment where there is a need for reliable load-bearing capabilities. Examples include construction machinery, material handling equipment, and industrial automation systems.
  • Compensating for Misalignment: In some applications, cam rollers are utilized to compensate for misalignment between components. The rolling motion of the cam follower allows it to adjust and accommodate slight deviations in the cam or track profile, ensuring smooth operation even in imperfect conditions.

The choice of cam roller design, size, and material depends on the specific requirements of the application. Factors such as load capacity, speed, operating conditions, and precision requirements are taken into consideration when selecting the appropriate cam roller. Regular maintenance, including lubrication and inspection of the cam roller, is important to ensure its proper functioning and longevity in the mechanical system.

In summary, a cam roller is a specialized type of roller bearing used in mechanical systems to transmit motion, provide guidance and support, bear loads, and compensate for misalignment. Its ability to follow the profile of a cam or track allows for efficient conversion of rotary motion to linear motion or vice versa. Cam rollers find application in a wide range of industries and play a crucial role in ensuring the smooth and reliable operation of mechanical systems.

China supplier Track Roller Bearing Stud Type Cam Followers Rolling Roller Bearing  China supplier Track Roller Bearing Stud Type Cam Followers Rolling Roller Bearing
editor by Dream 2024-04-25

China supplier Lfr 50/5-4 N U Groove Tungsten Carbide Wire Straightening Technology Rolling Bearing Tube Straightening Roller Sheet Metal Straightening Rollers

Product Description

 LFR 50/5-4 N U Groove Tungsten Carbide Wire Straightening Rollers Rolling Bearing Tube Straightening Roller Sheet Metal Straightening Rollers 

Product Description

This bearing is custom-designed for bearing steel, dimensional accuracy are very good, suitable for high-precision, high-speed, high-load components.
This roller mainly used for wire cutting molybdenum wire and other wire guide wheel guide wheel assembly. Please confirm the purchase.

Different shapes of materials are suitable for the straightening wheel groove type, the linear type is suitable for V groove, the bar material is suitable for U groove, and the rectangular flat material is suitable for H groove.

We offer customed service according to your drawing.

Our Advantages

Name:Wire Straightening Rollers
Material: Bearing steel
Pakage: 5pcs with carton
ID*OD*Height:
Groove: U/V 
Weight:0.3kgs
Usage:Part of wire straightener/guide roller

 

Product Parameters

Model description:
10x32x9 V4x1.5=10x32x9 represents inner diameter 10mm* outer diameter 32mm* height 9mm, V4x1.5 represents V groove, groove width 4mm, groove depth 1.5mm

Inner diameter*outer diameter*height(mm)

Groove

Material

Groove Width(mm)

Groove depth(mm)

10x32x9

V/U

Bearing steel

4

1.5

10X35X9

V

Bearing steel

5

2

10x40x14

U

Bearing steel

8

 

Detailed Photos

 

 

Certifications

Related Procucts

Company Profile

ZheJiang QiPang Industrial Co., Ltd. Founded in 2008, with 13 years of experience, is a research and development, production, sales of wire straightening cutting machine, bending machine, molding machine, copper pipe cutting machine equipment as 1 of the large machinery manufacturing enterprises. We believe that quality is survival, so we only provide you the best products. High quality products, in line with international standards, well received by domestic and foreign customers. All staff in our company are professionally trained, so we can recommend the most suitable equipment for you. Every machine has to pass strict inspection before it goes out. Any questions about the machine will be answered within 24 hours. Welcome to be our new customer! ZheJiang Qi Pang Industrial Co., LTD. specializes in producing wire straightening machine and cutting machine with advanced production technology, modern production mode, complete varieties and diverse styles. We can provide you with not only the nice quality products but also the great services.

 

Packaging & Shipping

 

FAQ
Q1: Are you a factory or trading company?

We are a factory . We can promise you a short lead time and best price if you purchase our machine. We also have our own trading department.

Q2: How does the factory ensure products quality?

With Nearly 16 years experience in manufacturing winding machine, we have our own technology develop department and testing department.

Quality is the first priority. We have strict purchasing system to ensure the quality of spare parts. We have experienced workers to assemble and test machine.

Q3:How about your after-sale service?

We have a professional technology supporting team for your timely services. You can get the help you need in time by telephone, webcam, online chat (Google talk, Facebook, Skype). Please contact us once the machine has any problem. Best service will be offered.

Q4: What are your payment terms?

100%TT or prepaid 50% , balance 50% before shipping.

Q5: How can I get my order? How can I know you sent the goods?

We will send the goods by UPS, DHL, FedEx or sea shipment. After we sent the goods, we will give you the tracking number or other relative files for checking.

Q6 : Will you send the installed machine or machine parts?

We will install the machine and test the machine before delivery. And the machine can be used directly after receiving the
machine.

Q7: Will you provide operation guidance for us?

We will send the instruction book with the machine and send you a video about how to operate the machine.

Q8 : How long is the warranty period?

12 months warranty, we will send you free spare parts by air within 1 week if there are any quality problems

 

 

 

/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: 1year
Type: CNC
Usage: Wire, Straightening and Cutting
Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

cam roller

What safety considerations should be taken into account when using cam rollers in industrial settings?

When using cam rollers in industrial settings, several safety considerations should be taken into account to ensure the well-being of personnel, prevent accidents, and maintain a safe working environment. Here are some important safety considerations when using cam rollers:

  • Proper Guarding: Cam rollers should be properly guarded to prevent accidental contact with moving parts. Depending on the specific application and the level of exposure, appropriate guarding measures such as barriers, enclosures, or safety covers should be in place to protect operators and other personnel from potential hazards associated with rotating cam rollers.
  • Lockout/Tagout Procedures: Before performing maintenance or repair tasks on cam rollers or associated equipment, appropriate lockout/tagout procedures should be followed. Lockout/tagout procedures help ensure that energy sources are isolated, machinery is de-energized, and appropriate warning devices are in place to prevent unintentional startup or release of stored energy, minimizing the risk of injury.
  • Training and Awareness: Adequate training should be provided to operators and maintenance personnel working with cam rollers. They should be trained on safe operating procedures, potential hazards, emergency protocols, and proper use of personal protective equipment (PPE). Regular refresher training sessions and ongoing awareness programs can help reinforce safe practices and promote a safety-conscious culture.
  • Risk Assessment: Conducting a thorough risk assessment specific to the application and environment is crucial. Identify potential hazards associated with cam rollers, such as pinch points, entanglement risks, or flying debris. Assess the severity of each hazard and implement appropriate control measures to mitigate the risks, such as installing physical barriers, implementing safety interlocks, or providing warning signage.
  • Maintenance and Inspections: Regular maintenance and inspections of cam rollers are essential for identifying and addressing any issues that may compromise safety. Inspect the rollers, bearings, tracks, and associated components for signs of wear, damage, or misalignment. Follow manufacturer recommendations for maintenance intervals, lubrication schedules, and component replacements to ensure the safe and reliable operation of cam rollers.
  • Proper Load Handling: Ensure that cam rollers are not subjected to loads or forces beyond their specified capacity. Overloading cam rollers can lead to premature wear, component failure, or dangerous conditions. Consider the weight, size, and distribution of the load being tracked and ensure that the cam rollers and associated components are designed to handle the applied loads safely.
  • Proper Installation and Alignment: Follow proper installation procedures and ensure accurate alignment of cam rollers. Improper installation or misalignment can result in unexpected movements, excessive friction, or component failures, posing safety risks. Adhere to manufacturer guidelines and recommended alignment procedures to ensure safe and reliable operation.
  • PPE Usage: Personal protective equipment (PPE) should be provided and used appropriately by personnel working with or in the vicinity of cam rollers. Depending on the specific hazards involved, PPE such as safety glasses, gloves, hearing protection, or safety shoes may be required to mitigate the risk of injuries due to flying debris, contact with moving parts, noise exposure, or other potential hazards.

It is important to consult relevant safety regulations, industry standards, and guidelines specific to the application and location to ensure full compliance with safety requirements when using cam rollers in industrial settings. Regular safety audits, hazard assessments, and open communication with personnel can help identify and address potential safety concerns, creating a safer working environment for everyone involved.

cam roller

How does the choice of materials impact the performance of cam rollers in different environments?

The choice of materials significantly impacts the performance of cam rollers, especially when it comes to their operation in different environments. The selection of appropriate materials ensures the durability, reliability, and efficiency of cam rollers, while also ensuring they can withstand the specific conditions and challenges posed by different environments. Here’s a detailed explanation of how the choice of materials impacts the performance of cam rollers in different environments:

  • Corrosive Environments: In corrosive environments where cam rollers may come into contact with chemicals, moisture, or other corrosive agents, the choice of materials is critical to prevent corrosion and maintain performance. Materials such as stainless steel or corrosion-resistant coatings like zinc plating or epoxy coatings are commonly used to protect cam rollers from corrosion, ensuring their longevity and reliable operation.
  • High-Temperature Environments: In high-temperature environments, the choice of materials for cam rollers is crucial to ensure dimensional stability and resistance to heat-induced degradation. Heat-resistant materials such as high-temperature alloys or ceramics are employed to withstand elevated temperatures without compromising performance or structural integrity.
  • Low-Temperature Environments: In low-temperature environments, materials used for cam rollers should retain their mechanical properties and flexibility even at extremely low temperatures. Some materials, such as certain grades of stainless steel or special polymers like PTFE (polytetrafluoroethylene), exhibit excellent low-temperature performance and are suitable for cam rollers operating in cold environments.
  • High-Speed Applications: In high-speed applications where cam rollers experience rapid rotational speeds, material selection is crucial to ensure reliable and safe operation. High-performance materials with excellent wear resistance, low friction coefficients, and high strength are preferred to withstand the stresses and demands of high-speed rotation without premature wear or failure.
  • High-Load Applications: In applications where cam rollers experience heavy loads, the choice of materials is essential to ensure sufficient load-carrying capacity and resistance to deformation or fatigue. Materials with high strength, hardness, and toughness, such as hardened steels or bearing-grade alloys, are commonly used to withstand the high loads and prevent premature wear or failure under heavy load conditions.
  • Cleanroom Environments: In cleanroom environments where strict cleanliness and contamination control are necessary, the choice of materials for cam rollers is critical. Materials that are low in particle generation, have low outgassing properties, and can withstand frequent cleaning and sterilization procedures are preferred to maintain the cleanliness and integrity of the cleanroom environment.
  • Food and Beverage Industry: In the food and beverage industry, cam rollers may need to comply with specific food safety regulations and requirements. Materials that are FDA-approved, food-grade, and resistant to chemicals or cleaning agents commonly used in the industry are selected to ensure the hygienic operation of cam rollers in food processing, packaging, or handling applications.

By carefully considering the environmental conditions and requirements of different applications, manufacturers can select the appropriate materials for cam rollers to optimize their performance and longevity. Material choices should take into account factors such as corrosion resistance, temperature resistance, speed capability, load capacity, cleanliness, and compliance with industry-specific regulations.

In summary, the choice of materials has a significant impact on the performance of cam rollers in different environments. The selection of appropriate materials ensures resistance to corrosion, high or low temperatures, enables high-speed or high-load operation, facilitates cleanliness in cleanroom environments, and meets specific requirements of industries like food and beverage. By choosing the right materials, cam rollers can deliver reliable, efficient, and long-lasting performance in diverse operating conditions.

cam roller

What is a cam roller, and how is it utilized in mechanical systems?

A cam roller, also known as a cam follower or track roller, is a specialized type of roller bearing used in mechanical systems. It is designed to follow the surface profile of a cam or track and transmit motion or force between the cam and a moving component. Here’s a detailed explanation of what a cam roller is and how it is utilized in mechanical systems:

A cam roller consists of a cylindrical roller, needle roller, or ball bearing that is mounted in a stud or yoke. The stud or yoke provides a means of attachment to the moving component of the mechanical system. The roller or bearing element is housed within a thick-walled outer ring, which serves as a guide and support for the roller. The outer ring has a profile that matches the shape of the cam or track over which the cam roller operates.

The primary function of a cam roller is to convert rotary motion into linear motion or vice versa. As the cam or track rotates, the cam roller follows the profile, causing the roller to move along the track. This motion can be utilized in various ways depending on the specific application. Here are some common uses of cam rollers in mechanical systems:

  • Motion Transmission: Cam rollers are often used to transmit motion from a rotating cam to a reciprocating or oscillating component. For example, in engines, cam followers are used to transfer the motion of the camshaft to the valves, opening and closing them at the appropriate timing.
  • Guiding and Support: Cam rollers can also provide guidance and support to moving components in a mechanical system. They help maintain proper alignment and prevent lateral movement or deflection. This is particularly useful in applications such as conveyor systems, where cam rollers guide the movement of belts or chains.
  • Load Bearing: Cam rollers are designed to withstand high loads and provide support to heavy-duty applications. They are often used in machinery and equipment where there is a need for reliable load-bearing capabilities. Examples include construction machinery, material handling equipment, and industrial automation systems.
  • Compensating for Misalignment: In some applications, cam rollers are utilized to compensate for misalignment between components. The rolling motion of the cam follower allows it to adjust and accommodate slight deviations in the cam or track profile, ensuring smooth operation even in imperfect conditions.

The choice of cam roller design, size, and material depends on the specific requirements of the application. Factors such as load capacity, speed, operating conditions, and precision requirements are taken into consideration when selecting the appropriate cam roller. Regular maintenance, including lubrication and inspection of the cam roller, is important to ensure its proper functioning and longevity in the mechanical system.

In summary, a cam roller is a specialized type of roller bearing used in mechanical systems to transmit motion, provide guidance and support, bear loads, and compensate for misalignment. Its ability to follow the profile of a cam or track allows for efficient conversion of rotary motion to linear motion or vice versa. Cam rollers find application in a wide range of industries and play a crucial role in ensuring the smooth and reliable operation of mechanical systems.

China supplier Lfr 50/5-4 N U Groove Tungsten Carbide Wire Straightening Technology Rolling Bearing Tube Straightening Roller Sheet Metal Straightening Rollers  China supplier Lfr 50/5-4 N U Groove Tungsten Carbide Wire Straightening Technology Rolling Bearing Tube Straightening Roller Sheet Metal Straightening Rollers
editor by CX 2024-01-15

China supplier Lfr 50/5-4 N U Groove Tungsten Carbide Wire Straightening Technology Rolling Bearing Tube Straightening Roller Sheet Metal Straightening Rollers

Product Description

 LFR 50/5-4 N U Groove Tungsten Carbide Wire Straightening Rollers Rolling Bearing Tube Straightening Roller Sheet Metal Straightening Rollers 

Product Description

This bearing is custom-designed for bearing steel, dimensional accuracy are very good, suitable for high-precision, high-speed, high-load components.
This roller mainly used for wire cutting molybdenum wire and other wire guide wheel guide wheel assembly. Please confirm the purchase.

Different shapes of materials are suitable for the straightening wheel groove type, the linear type is suitable for V groove, the bar material is suitable for U groove, and the rectangular flat material is suitable for H groove.

We offer customed service according to your drawing.

Our Advantages

Name:Wire Straightening Rollers
Material: Bearing steel
Pakage: 5pcs with carton
ID*OD*Height:
Groove: U/V 
Weight:0.3kgs
Usage:Part of wire straightener/guide roller

 

Product Parameters

Model description:
10x32x9 V4x1.5=10x32x9 represents inner diameter 10mm* outer diameter 32mm* height 9mm, V4x1.5 represents V groove, groove width 4mm, groove depth 1.5mm

Inner diameter*outer diameter*height(mm)

Groove

Material

Groove Width(mm)

Groove depth(mm)

10x32x9

V/U

Bearing steel

4

1.5

10X35X9

V

Bearing steel

5

2

10x40x14

U

Bearing steel

8

 

Detailed Photos

 

 

Certifications

Related Procucts

Company Profile

ZheJiang QiPang Industrial Co., Ltd. Founded in 2008, with 13 years of experience, is a research and development, production, sales of wire straightening cutting machine, bending machine, molding machine, copper pipe cutting machine equipment as 1 of the large machinery manufacturing enterprises. We believe that quality is survival, so we only provide you the best products. High quality products, in line with international standards, well received by domestic and foreign customers. All staff in our company are professionally trained, so we can recommend the most suitable equipment for you. Every machine has to pass strict inspection before it goes out. Any questions about the machine will be answered within 24 hours. Welcome to be our new customer! ZheJiang Qi Pang Industrial Co., LTD. specializes in producing wire straightening machine and cutting machine with advanced production technology, modern production mode, complete varieties and diverse styles. We can provide you with not only the nice quality products but also the great services.

 

Packaging & Shipping

 

FAQ
Q1: Are you a factory or trading company?

We are a factory . We can promise you a short lead time and best price if you purchase our machine. We also have our own trading department.

Q2: How does the factory ensure products quality?

With Nearly 16 years experience in manufacturing winding machine, we have our own technology develop department and testing department.

Quality is the first priority. We have strict purchasing system to ensure the quality of spare parts. We have experienced workers to assemble and test machine.

Q3:How about your after-sale service?

We have a professional technology supporting team for your timely services. You can get the help you need in time by telephone, webcam, online chat (Google talk, Facebook, Skype). Please contact us once the machine has any problem. Best service will be offered.

Q4: What are your payment terms?

100%TT or prepaid 50% , balance 50% before shipping.

Q5: How can I get my order? How can I know you sent the goods?

We will send the goods by UPS, DHL, FedEx or sea shipment. After we sent the goods, we will give you the tracking number or other relative files for checking.

Q6 : Will you send the installed machine or machine parts?

We will install the machine and test the machine before delivery. And the machine can be used directly after receiving the
machine.

Q7: Will you provide operation guidance for us?

We will send the instruction book with the machine and send you a video about how to operate the machine.

Q8 : How long is the warranty period?

12 months warranty, we will send you free spare parts by air within 1 week if there are any quality problems

 

 

 

/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: 1year
Type: CNC
Usage: Wire, Straightening and Cutting
Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

cam roller

How do cam rollers contribute to the adaptability and versatility of tracking systems in various settings?

Cam rollers play a significant role in enhancing the adaptability and versatility of tracking systems across various settings. Their design and functionality enable them to meet the diverse requirements of different applications. Here’s a detailed explanation of how cam rollers contribute to the adaptability and versatility of tracking systems:

  • Multiple Track Configurations: Cam rollers can be utilized in various track configurations, such as linear tracks, curved tracks, or complex multi-axis tracks. This flexibility allows tracking systems to adapt to different motion patterns and trajectories required by different applications. Whether it’s a straight-line motion, circular path, or customized multi-axis motion, cam rollers can be configured to accommodate a wide range of tracking requirements.
  • Adjustable Cam Profiles: The design of cam rollers allows for adjustable cam profiles. Cam profiles determine the motion characteristics of the tracking system, including acceleration, deceleration, and dwell periods. By modifying the cam profiles, cam rollers can be customized to suit specific application needs. This adjustability enhances the adaptability of tracking systems, enabling them to handle different speed profiles, motion sequences, or tracking patterns.
  • Modular and Scalable Design: Cam rollers are often designed with a modular and scalable approach, allowing for easy integration into different systems and the ability to scale up or down based on application requirements. They can be combined with other components, such as motors, gearboxes, or sensors, to create a complete tracking system. This modular design facilitates the adaptability and versatility of tracking systems, enabling customization and quick reconfiguration as per changing needs.
  • Wide Range of Load Capacity: Cam rollers are available in various sizes and configurations, offering a wide range of load capacities. From lightweight applications to heavy-duty industrial settings, cam rollers can handle different loads and forces. This versatility allows tracking systems to adapt to diverse payload requirements, making them suitable for applications ranging from small-scale automation to large-scale material handling.
  • Compatibility with Different Environments: Cam rollers are designed to operate in various environmental conditions. They can withstand factors like temperature variations, dust, moisture, and contaminants commonly found in industrial or outdoor settings. This compatibility with different environments enhances the adaptability of tracking systems, enabling their deployment in diverse industries such as manufacturing, logistics, automotive, and aerospace.
  • Integration with Control Systems: Cam rollers can be seamlessly integrated with electronic or computer-controlled components, such as sensors, actuators, or programmable logic controllers (PLCs). This integration allows for precise control, synchronization, and automation of tracking systems. By incorporating control systems, cam rollers can adapt to dynamic operating conditions, respond to real-time feedback, and enable advanced tracking functionalities.
  • Compatibility with Various Object Shapes and Sizes: Cam rollers are designed to accommodate a wide range of object shapes, sizes, and materials. They can track objects of different geometries, from flat panels to irregularly shaped components. This compatibility with various object characteristics enhances the versatility of tracking systems, enabling them to handle diverse workpieces, products, or materials.

The adaptability and versatility of tracking systems are significantly enhanced by the use of cam rollers. Their ability to work with different track configurations, adjust cam profiles, modular design, load capacity, environmental compatibility, integration with control systems, and compatibility with various object shapes and sizes makes them a valuable component in a wide range of applications, providing adaptability, flexibility, and versatility to tracking systems in diverse settings.

cam roller

Can you explain the impact of cam rollers on the overall efficiency of tracking systems?

Cam rollers play a crucial role in the overall efficiency of tracking systems. These systems rely on the precise and controlled movement of components or objects along a predetermined path, and cam rollers contribute to achieving accurate tracking, smooth motion, and reliable operation. Here’s a detailed explanation of the impact of cam rollers on the overall efficiency of tracking systems:

  • Precision Tracking: Cam rollers are designed to follow a specific cam profile or track, which allows for precise tracking of objects or components. The shape and contour of the cam determine the desired motion, and the cam rollers ensure that the objects or components move along the track with high accuracy and repeatability. This precise tracking capability enhances the overall efficiency of tracking systems by ensuring that the intended path is followed consistently.
  • Smooth Motion: Cam rollers are engineered to provide smooth rolling motion along the cam profile or track. The rolling elements of the cam rollers, such as bearings or rollers, minimize friction and enable the objects or components to glide smoothly along the track. This smooth motion reduces energy consumption, minimizes wear and tear, and enhances the overall efficiency of the tracking system by facilitating seamless movement without jerks or disruptions.
  • Reduced Wear: By distributing the load evenly and providing a rolling contact, cam rollers help reduce wear on both the rollers themselves and the track they follow. The rolling action minimizes frictional forces and wear compared to sliding or dragging mechanisms. This reduced wear extends the lifespan of the cam rollers and the tracking system components, ensuring long-term efficiency and reliability.
  • High-Speed Capability: Cam rollers are designed to operate at high speeds without compromising performance. The choice of materials, lubrication, and design factors such as stability and balance enable cam rollers to handle rapid motion and high-speed tracking requirements. Their ability to maintain accurate tracking and smooth motion even at high speeds enhances the overall efficiency of tracking systems in applications where speed is crucial.
  • Load Capacity: Cam rollers are engineered to handle varying load capacities based on their design and construction. They can support significant loads while maintaining precise tracking and smooth motion. This load-carrying capability ensures that tracking systems can accommodate different objects or components of varying weights, contributing to the overall efficiency of the system by enabling versatile and reliable operation.
  • Reliability and Durability: Cam rollers are typically designed for robustness and durability. They are built to withstand the demands of continuous operation, heavy loads, and challenging environmental conditions. The use of high-quality materials, proper lubrication, and appropriate maintenance practices ensure the reliability and longevity of cam rollers, minimizing downtime and maximizing the overall efficiency of tracking systems.

In summary, cam rollers have a significant impact on the overall efficiency of tracking systems. Their precision tracking, smooth motion, reduced wear, high-speed capability, load capacity, reliability, and durability contribute to the efficient and reliable operation of tracking systems in various applications. By incorporating well-designed and properly maintained cam rollers, tracking systems can achieve optimal performance, accuracy, and productivity.

cam roller

What are the different types and configurations of cam rollers available in the market?

Cam rollers, also known as cam followers or track rollers, are available in various types and configurations to suit different applications and requirements. The selection of the appropriate type and configuration depends on factors such as load capacity, speed, operating conditions, and specific application needs. Here’s a detailed explanation of the different types and configurations of cam rollers available in the market:

  • Stud-Type Cam Rollers: Stud-type cam rollers have a stud or bolt that extends from the roller’s outer ring. The stud allows for secure attachment to the moving part of the mechanical system. Stud-type cam rollers are commonly used in applications that require high radial loads and moderate thrust loads, such as camshaft followers in engines or support rollers in conveyor systems.
  • Yoke-Type Cam Rollers: Yoke-type cam rollers have a yoke or mounting flange that provides a broader surface area for attachment. The yoke is typically bolted or clamped to the moving component. Yoke-type cam rollers are suitable for applications with higher radial and axial loads, such as in heavy machinery or industrial automation systems.
  • Full Complement Cam Followers: Full complement cam followers have a design that incorporates a maximum number of rolling elements, providing high load-carrying capacity. These cam rollers do not have a cage or roller retainer, allowing for more rollers to be included. Full complement cam followers are commonly used in applications where maximum load capacity is required, but speed and precision may be lower priority.
  • Caged Cam Followers: Caged cam followers have a cage or roller retainer that separates and guides the rolling elements. The cage maintains proper spacing and alignment of the rollers. Caged cam followers offer advantages such as reduced friction, improved speed capability, and better roller control. They are suitable for applications that require higher speeds, precision, and controlled roller movement.
  • Hexagonal Bore Cam Followers: Hexagonal bore cam followers have a hexagonal-shaped inner bore instead of a cylindrical bore. This design allows for direct tightening using a hexagonal wrench, simplifying installation and adjustment. Hexagonal bore cam followers are commonly used in applications where frequent adjustment or repositioning is required, such as in printing machinery or packaging equipment.
  • Stud-Type with Eccentric Collar: This type of cam roller features a stud with an eccentric collar. The eccentric collar allows for easy adjustment of the roller’s position by rotating the collar, providing a simple means of adjusting the preload or clearance in the system. Stud-type cam rollers with eccentric collars are commonly used in applications that require precise adjustment, such as in tensioning systems or in machinery with adjustable clearances.

These are some of the commonly available types and configurations of cam rollers in the market. Each type offers specific advantages and is designed to meet the demands of different applications. It is important to consider factors such as load capacity, speed requirements, precision, and specific application needs when selecting the appropriate type and configuration of cam roller.

In summary, the market offers a variety of cam roller types and configurations, including stud-type, yoke-type, full complement, caged, hexagonal bore, and stud-type with eccentric collar. Each type has its own advantages and is suitable for specific applications based on load capacity, speed, precision, and adjustability requirements.

China supplier Lfr 50/5-4 N U Groove Tungsten Carbide Wire Straightening Technology Rolling Bearing Tube Straightening Roller Sheet Metal Straightening Rollers  China supplier Lfr 50/5-4 N U Groove Tungsten Carbide Wire Straightening Technology Rolling Bearing Tube Straightening Roller Sheet Metal Straightening Rollers
editor by CX 2024-01-11

China Sliding Gate Wheel Suppliers Hanging Rolling Gate Track Wheel Heavy Duty Stainless Steel Gate Roller Wheel Bearings drive shaft bearing

Solution Description

Single Bearing Trapezoid Gate Wheel

Design A B C D E Excess weight
(Y)
Units:g
Bodyweight
(U)
Units:g
Bodyweight
(V)
Units:g
30×11 35 11 thirty 45 17 * * sixty three
40×14 forty five 14 38 seventy five twenty five 192 185 194
50×15 55 15 forty eight 75 twenty five 253 244 263
50×15 60 fifteen 48 85 30 303 292 302
60×17 65 20 fifty eight 85 thirty four hundred 395 410
70×20 80 20 sixty eight a hundred 35 640 640 665
80×20 eighty five 20 48 a hundred 35 805 785 825
90×20 100 twenty 88 133 35 1130 1121 1145
100×20 105 20 ninety eight 133 35 1350 1338 1363
The data is calculated by hand, maybe there are some problems, just for reference.

Double Bearing Gate Wheel

Design A B C D E Excess weight(Y) Fat(U)
50MM fifty five 26 48 85 thirty 324 320
60MM 65 thirty fifty eight eighty five thirty 617 580
70MM eighty 32 68 one hundred 35 977 954
80MM 85 32 forty eight 100 35 1260 1223
90MM a hundred 32 88 133 35 1788 1760
100MM one zero five 32 ninety eight 133 35 2100 2078
The knowledge is measured by hand, maybe there are some errors, just for reference.

Laminated Gate Wheel

Model A B C D Fat(Y/V) Weight(U)
50mm forty eight 15 a hundred 26 260 250
60mm 58 17 one hundred 26 390 360
70mm 68 20 136 33 590 570
80mm 78 twenty 136 33 750 725
90mm 88 20 152 33 1060 1030
100mm ninety eight twenty 152 33 1265 1225
The information is calculated by hand, probably there are some errors, just for reference.

Dangle Gate Wheel

 Model A B C D E F G H I
H25 51 25 M9*50 nine 95 79 twenty five six 27
H38 86 38 M12*70 11 120 118 38 10 32
H55 a hundred and fifteen fifty five M20*85 fourteen a hundred and forty 159 forty four ten fifteen
The information is measured by hand, probably there are some problems, just for reference.

Triangle Gate Wheels/ Rotation Gate Wheels/ Hanging Wheels/ White Zinc Gate Wheels/ Doule Wheels Double Bearing Gate Wheel

      We have already had nealy a ten years producting and exporting expertise. Since 2014, we have marketed our items to dozens of countries all around the world. And we have set up a deep cooperative partnership with numerous buyers. 
      We make our goods with heart, try to provide the best quality for clients. So we obtained a lot of consumer acceptance. After that, we will also strictly manage, down-to-earth, and forge forward.

        1.ZheJiang Joinwin Components and Equipment Co., Ltd. we have 10 many years producing and exporting experience which ranks among the very best in China. Primarily sales pliers, spanners, scissors, saws, screwdrivers, wheels, sillicone sealant, tapline and other hand equipment. 
        2.Situated in HangZhou exactly where is just 180km considerably from HangZhou Port and several raw content factories close to, greatly reduces transportation and procurement costs.
        3.We have skilled product sales and engineers to offer pleased support to consumers. Our business handles an area of one thousand square meters, has the most advanced manufacturing equipment and technology.      
        4.Consumer first, staff operate, embrace alter, honest are our firm lifestyle.      
        5.We purpose to give clients a lot more basic safety and hassle-free daily life.

              Pliers                 Adjustable Wrench  Combination Spanners         Hammers               Pruner Scissors        Aviation Tin Snips
      Screwdrivers                    Padlocks                   Hand Saws                       Axe                 Silicone Sealant 
Q1: Can I get a sample?
A1: Sure, the samples are generally free of charge for customers.

Q2: Can you supply OEM service?
A2: Yes, we can generate the merchandise according to clients’ calls for.

Q3: How can you assure the good quality?
A3: We have sophisticated products and skilled engineer and high quality inspector to guarantee the high quality of the items. And we will send additional products for insurance coverage. Apart from, we have happy soon after-service.

This fall: What is the MOQ?
A4: five hundred PCS.

Q5: How prolonged you will end my get?
A5: Entirely in 30 days. (The certain scenario relies upon on the creation plan of the generation department.)

US $0.3-1.2
/ Piece
|
500 Pieces

(Min. Order)

###

Certification: CE
Splittable: Splittable
Surface Treatment: Zinc Plated
Material: Metal
Color: Customized
Logo: Customized

###

Samples:
US$ 0.01/Piece
1 Piece(Min.Order)

|
Request Sample

###

Customization:

###

Model A B C D E Weight
(Y)
Units:g
Weight
(U)
Units:g
Weight
(V)
Units:g
30×11 35 11 30 45 17 * * 63
40×14 45 14 38 75 25 192 185 194
50×15 55 15 48 75 25 253 244 263
50×15 60 15 48 85 30 303 292 302
60×17 65 20 58 85 30 400 395 410
70×20 80 20 68 100 35 640 640 665
80×20 85 20 48 100 35 805 785 825
90×20 100 20 88 133 35 1130 1121 1145
100×20 105 20 98 133 35 1350 1338 1363
The data is measured by hand, maybe there are some errors, just for reference.

###

Model A B C D E Weight(Y) Weight(U)
50MM 55 26 48 85 30 324 320
60MM 65 30 58 85 30 617 580
70MM 80 32 68 100 35 977 954
80MM 85 32 48 100 35 1260 1223
90MM 100 32 88 133 35 1788 1760
100MM 105 32 98 133 35 2100 2078
The data is measured by hand, maybe there are some errors, just for reference.

###

Model A B C D Weight(Y/V) Weight(U)
50mm 48 15 100 26 260 250
60mm 58 17 100 26 390 360
70mm 68 20 136 33 590 570
80mm 78 20 136 33 750 725
90mm 88 20 152 33 1060 1030
100mm 98 20 152 33 1265 1225
The data is measured by hand, maybe there are some errors, just for reference.

###

 Model A B C D E F G H I
H25 51 25 M9*50 9 95 79 25 6 27
H38 86 38 M12*70 11 120 118 38 10 32
H55 115 55 M20*85 14 140 159 44 10 15
The data is measured by hand, maybe there are some errors, just for reference.
US $0.3-1.2
/ Piece
|
500 Pieces

(Min. Order)

###

Certification: CE
Splittable: Splittable
Surface Treatment: Zinc Plated
Material: Metal
Color: Customized
Logo: Customized

###

Samples:
US$ 0.01/Piece
1 Piece(Min.Order)

|
Request Sample

###

Customization:

###

Model A B C D E Weight
(Y)
Units:g
Weight
(U)
Units:g
Weight
(V)
Units:g
30×11 35 11 30 45 17 * * 63
40×14 45 14 38 75 25 192 185 194
50×15 55 15 48 75 25 253 244 263
50×15 60 15 48 85 30 303 292 302
60×17 65 20 58 85 30 400 395 410
70×20 80 20 68 100 35 640 640 665
80×20 85 20 48 100 35 805 785 825
90×20 100 20 88 133 35 1130 1121 1145
100×20 105 20 98 133 35 1350 1338 1363
The data is measured by hand, maybe there are some errors, just for reference.

###

Model A B C D E Weight(Y) Weight(U)
50MM 55 26 48 85 30 324 320
60MM 65 30 58 85 30 617 580
70MM 80 32 68 100 35 977 954
80MM 85 32 48 100 35 1260 1223
90MM 100 32 88 133 35 1788 1760
100MM 105 32 98 133 35 2100 2078
The data is measured by hand, maybe there are some errors, just for reference.

###

Model A B C D Weight(Y/V) Weight(U)
50mm 48 15 100 26 260 250
60mm 58 17 100 26 390 360
70mm 68 20 136 33 590 570
80mm 78 20 136 33 750 725
90mm 88 20 152 33 1060 1030
100mm 98 20 152 33 1265 1225
The data is measured by hand, maybe there are some errors, just for reference.

###

 Model A B C D E F G H I
H25 51 25 M9*50 9 95 79 25 6 27
H38 86 38 M12*70 11 120 118 38 10 32
H55 115 55 M20*85 14 140 159 44 10 15
The data is measured by hand, maybe there are some errors, just for reference.

How to Replace a Bearing

If you want to select a bearing for a specific application, you should know a few basics. This article will give you an overview of ball, angular contact, and sliding-contact bearings. You can choose a bearing according to the application based on the characteristics of its material and preload. If you are not sure how to choose a bearing, try experimenting with it. The next step is to understand the Z-axis, which is the axes along which the bearing moves.

Z axis

When it comes to replacing your Z axis bearing, there are several things you must know. First, you need to make sure that the bearings are seated correctly. Then, you should check the tension and rotation of each one. To ensure that both bearings are equally tensioned, you should flex the Core to the desired angle. This will keep the Z axis perpendicular to the work surface. To do this, first remove the Z axis bearing from its housing and insert it into the Z axis motor plate. Next, insert the flanged bearing into the Z axis motor plate and secure it with two M5x8mm button head cap screws.
Make sure that the bearing plate and the Z Coupler part are flush and have equal spacing. The spacing between the two parts is important, as too much spacing will cause the leadscrew to become tight. The screws should be very loose, with the exception of the ones that engage the nylocks. After installing the bearing, the next step is to start the Z axis. Once this is done, you’ll be able to move it around with a stepper.

Angular contact

bearing
Ball bearings are made with angular contacts that result in an angle between the bearing’s races. While the axial load moves in one direction through the bearing, the radial load follows a curved path, tending to separate the races axially. In order to minimize this frictional effect, angular contact bearings are designed with the same contact angle on the inner and outer races. The contact angle must be chosen to match the relative proportions of the axial and radial loads. Generally, a larger contact angle supports a higher axial load, while reducing radial load.
Ball bearings are the most common type of angular contact bearings. Angular contact ball bearings are used in many applications, but their primary purpose is in the spindle of a machine tool. These bearings are suitable for high-speed, precision rotation. Their radial load capacity is proportional to the angular contact angle, so larger contact angles tend to enlarge with speed. Angular contact ball bearings are available in single and double-row configurations.
Angular contact ball bearings are a great choice for applications that involve axial loads and complex shapes. These bearings have raceways on the inner and outer rings and mutual displacement along the axial axis. Their axial load bearing capacity increases as the contact Angle a rises. Angular contact ball bearings can withstand loads up to five times their initial weight! For those who are new to bearings, there are many resources online dedicated to the subject.
Despite their complexity, angular contact ball bearings are highly versatile and can be used in a wide range of applications. Their angular contact enables them to withstand moderate radial and thrust loads. Unlike some other bearings, angular contact ball bearings can be positioned in tandem to reduce friction. They also feature a preload mechanism that removes excess play while the bearing is in use.
Angular contact ball bearings are made with different lubricants and cage materials. Standard cages for angular contact ball bearings correspond to Table 1. Some are machined synthetic resins while others are molded polyamide. These cage materials are used to further enhance the bearing’s axial load capacity. Further, angular contact ball bearings can withstand high speeds and radial loads. Compared to radial contact ball bearings, angular contact ball bearings offer the greatest flexibility.

Ball bearings

bearing
Ball bearings are circular structures with two separate rings. The smaller ring is mounted on a shaft. The inner ring has a groove on the outer diameter that acts as a path for the balls. Both the inner and outer ring surfaces are finished with very high precision and tolerance. The outer ring is the circular structure with the rolling elements. These elements can take many forms. The inner and outer races are generally made of steel or ceramic.
Silicon nitride ceramic balls have good corrosion resistance and lightweight, but are more expensive than aluminum oxide balls. They also exhibit an insulating effect and are self-lubricating. Silicon nitride is also suitable for high-temperature environments. However, this type of material has the disadvantage of wearing out rapidly and is prone to cracking and shattering, as is the case with bearing steel and glass. It’s also less resistant to heat than aluminum oxide, so it’s best to buy aluminum nitride or ceramic ball bearings for applications that are subjected to extremely high temperatures.
Another type of ball bearings is the thrust bearing. It has a special design that accommodates forces in both axial and radial directions. It is also called a bidirectional bearing because its races are side-by-side. Axial ball bearings use a side-by-side design, and axial balls are used when the loads are transmitted through the wheel. However, they have poor axial support and are prone to separating during heavy radial loads.
The basic idea behind ball bearings is to reduce friction. By reducing friction, you’ll be able to transfer more energy, have less erosion, and improve the life of your machine. With today’s advances in technology, ball bearings can perform better than ever before. From iron to steel to plastics, the materials used in bearings have improved dramatically. Bearings may also incorporate an electromagnetic field. So, it’s best to select the right one for your machine.
The life expectancy of ball bearings depends on many factors, including the operating speed, lubrication, and temperature. A single million-rpm ball bearing can handle between one and five million rotations. As long as its surface contact area is as small as possible, it’s likely to be serviceable for at least one million rotations. However, the average lifespan of ball bearings depends on the application and operating conditions. Fortunately, most bearings can handle a million or more rotations before they start showing signs of fatigue.

Sliding-contact bearings

bearing
The basic principle behind sliding-contact bearings is that two surfaces move in contact with one another. This type of bearing works best in situations where the surfaces are made of dissimilar materials. For instance, a steel shaft shouldn’t run in a bronze-lined bore, or vice versa. Instead, one element should be harder than the other, since wear would concentrate in that area. In addition, abrasive particles tend to force themselves into the softer surface, causing a groove to wear in that part.
Sliding-contact bearings have low coefficients of friction and are commonly used in low-speed applications. Unlike ball and roller bearings, sliding contact bearings have to be lubricated on both sides of the contacting surfaces to minimize wear and tear. Sliding-contact bearings generally are made of ceramics, brass, and polymers. Because of their lower friction, they are less accurate than rolling-element bearings.
Sliding-contact bearings are also known as plain or sleeve bearings. They have a sliding motion between their two surfaces, which is reduced by lubrication. This type of bearing is often used in rotary applications and as guide mechanisms. In addition to providing sliding action, sliding-contact bearings are self-lubricating and have high load-carrying capacities. They are typically available in two different types: plain bearings and thrust bearings.
Sliding-contact linear bearing systems consist of a moving structure (called the carriage or slide) and the surfaces on which the two elements slide. The surfaces on which the bearing and journal move are called rails, ways, or guides. A bore hole is a complex geometry, and a minimum oil film thickness h0 is usually used at the line of centers. It is possible to have a sliding-contact bearing in a pillow block.
Because these bearings are porous, they can absorb 15 to 30% of the lubrication oil. This material is commonly used in automobile and machine tools. Many non-metallic materials are used as bearings. One example is rubber, which offers excellent shock absorbency and embeddability. While rubber has poor strength and thermal conductivity, it is commonly used in deep-well pumps and centrifugal pumps. This material has high impact strength, but is not as rigid as steel.

China Sliding Gate Wheel Suppliers Hanging Rolling Gate Track Wheel Heavy Duty Stainless Steel Gate Roller Wheel Bearings     drive shaft bearingChina Sliding Gate Wheel Suppliers Hanging Rolling Gate Track Wheel Heavy Duty Stainless Steel Gate Roller Wheel Bearings     drive shaft bearing
editor by czh 2023-01-05