Tag Archives: precision bearing

China high quality Stud Type Cam Followers Bearing with High Precision

Product Description

CCFH1S  CCFH1SB     CF1 1/8S  CF1 1/8SB  CFE1 1/8SB  CCFH1 1/8S  CCFH1 1/8SB  CF1 1/4 CF1 1/4B CCFE1 1/4 CCFH1 1/4 CCFH1 1/4B CF1 3/8 CF13/8B CCF1 3/8 CFH1 3/8B CCFH1 3/8 CCFH1 3/8B CF1 1/4S CF1 1/4SB CCFH1 1/4S CCFH1 1/4SB  CF1 3/8S CF1 3/8SB CCFH1 3/8S CCFH1 3/8SB CF1 1/2  CF1 1/2B CCFH1 1/2 CCFH1 1/2B CF1 5/8 CF1 5/8B CF1 1/2S CF1 1/2SB CCFH1 1/2S CCFH1 1/2SB CF1 5/8S CF1 5/8SB CCFH1 5/8S CCFH1 5/8SB CF1 1/2 CF1 1/2B CCF1 1/2 CCFH1 1/2B CF1 5/8 CF1 5/8 B CCFH1 5/8 CCFH1 5/8B CF1 1/2S  CF1 1/2SB CCFH1 1/2S CCFH1 1/2SB  CF1 5/8S CF1 5/8SB CCFH1 5/8S CCFH1 5/8SB CCFH1 5/8  CCFH1 5/8B CCF1 1/2SB CF1 3/4 CF1 3/4B CCFH1 3/4 CCFH1 3/4B CF1 7/8 CF1 7/8B CCFH1 7/8 CCFH1 7/8B CF1 3/4S CF1 3/4SB CCFH1 3/4S CCFH1 3/4SB CF1 7/8S CF1 7/8SB CCFH1 7/8S CCFH1 7/8SB CCFH1 7/8S CCFH1 7/8SB CF2 CF2B CCF2 CCF2B CFE2 CCFE2 CCFE2B CFH2 CFH2B CCFH2 CCFH2B    CF2 1/4 CF2 1/4B CCF2 1/4 CCF2 1/4B CFE2 1/4 CFE2 1/4B CCFE2 1/4 CCFE2 1/4B CFH2 1/4 CFH2 1/4B CCFH2 1/4 CCFH2 1/4B CF2S CF2SB CCF2S CCF2SB CFE2S CFE2SB CCFE2S CCFE2SB CFH2S CFH2SB CCFH2S CCFH2SB CF2 1/4S CF2 1/4SB CCF2 1/4S CCF2 1/4SB   CFE2 1/4S CFE2 1/4SB CCFE2 1/4S CCFE2 1/4SB CFH2 1/4S CFH2 1/4SB CCFH2 1/4S CCFH2 1/4SB CCFH2S CCFH2SB CF2 1/4S CF2 1/4SB CCF2 1/4S CCF2 1/4SB CFE2 1/4S CFE2 1/4SB CCFE2 1/4S CCFE2 1/4SB CFH2 1/4S CFH2 1/4SB CCFH2 1/4S CCFH2 1/4SB CF2 1/2 CF2 1/2B CCF2 1/2 CCF2 1/2B CFE2 1/2 CFE2 1/2B CCFE2 1/2 CCFE2 1/2B CFH2 1/2 CFH2 1/2B CCFH2 1/2 CCFH2 1/2B CF2 3/4 CF2 3/4B CCF2 3/4 CCF2 3/4B CFE2 3/4 CFE2 3/4B CCFE2 3/4 CCFE2 3/4B CFH2 3/4 CFH2 3/4B CCFH2 3/4 CCFH2 3/4B CF2 1/2S CF2 1/2SB CCF2 1/2S CCF2 1/2SB CFE2 1/2S CFE2 1/2SB CCFE2 1/2S CCFE2 1/2SB CFH2 1/2S CFH2 1/2SB CCFH2 1/2S  CCFH2 1/2SB CF2 3/4S CF2 3/4SB CCF2 3/4S CCF2 3/4SB CFE2 3/4S CFE2 3/4SB CCFE2 3/4S CCFE2 3/4SB CFH2 3/4S CFH2 3/4SB  CCFH2 3/4S CCFH2 3/4SB CF3 CF3B CCF3B CFE3B CCFE3 CCFE3B CFH3B CCFH3 CCFH3B CF3 1/4 CF3 1/4B CCFE3 1/4B CCFH3 1/4 CCFH3 1/4B CF3S CF3SB CCF3S CCF3SB CFE3S CFE3SB CCFE3S CCFE3SB CFH3S CCFH3S CCFH3SB CF3 1/4S CF3 1/4SB CCF3 1/4S CCFE3 1/4S CCFE3 1/4SB CCFH3 1/4S CCFH3 1/4SB CF3 1/2 CF3 1/2B CCFE3 1/2 CCFE3 1/2B CCFH31/2 CCFH3 1/2B CF4 CF4B CCF4 CCF4B CFE4 CFE4B CCFE4 CCFE4B CFH4 CFH4B CCFH4 CCFH4B CF3 1/2S CF3 1/2SB CCFE3 1/2S CCFE3 1/2SB CCFH3 1/2S CCFH3 1/2SB CF4S CF4SB CCF4S CCF4SB CFE4S CFE4SB CCFE4S CCFE4SB CFH4S CFH4SB CCFH4S CCFH4SB CF5SB CCF5SB CFH5SB CCFH5SB CF6SB CCF6SB CFH6SB CCFH6SB CCFH6SB CF7SB CCF7SB CFH7SB CCFH7SB CF8SB CCF8SB CF9SB CCF9SB CF10SB CCF10SB CF5S CCF5S CFH5S CCFH5S CF6S CCF6S CFH6S CCFH6S CF7S CCF7S CFH7S CCFH7S CF8S CCF8S CF9S CCF9S CF10S CCF10S
       
       
    
      
      

 

 

OUR PROMISES
   Product quality standards are guaranteed. Our products have got ISO 9001 & CE international quality management system. They all produced with best advanced technology.We are proactive and we offer only products complying with top standards of quality and warranty.
  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Cage: With Cage
Rows Number: Double
Load Direction: Thrust Bearing
Style: With Outer Ring
Material: Bearing Steel
Type: Open
Samples:
US$ 2/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

cam roller

How do electronic or computer-controlled components integrate with cam rollers in modern applications?

In modern applications, electronic or computer-controlled components play a significant role in integrating with cam rollers to enhance functionality, precision, and automation. The integration of electronic or computer-controlled components with cam rollers enables advanced control, monitoring, and synchronization of the motion system. Here’s a detailed explanation of how electronic or computer-controlled components integrate with cam rollers in modern applications:

  • Sensor Integration: Electronic sensors can be integrated with cam rollers to provide real-time feedback on various parameters such as position, speed, acceleration, and load. Position sensors, such as encoders or linear displacement sensors, can be used to precisely determine the position of the cam rollers and the objects or components they are tracking. This information can then be used for closed-loop control, ensuring accurate tracking and motion control.
  • Control Systems: Electronic or computer-controlled systems can be employed to manage the operation of cam rollers. These control systems can receive input from sensors and use algorithms to calculate the desired motion profiles. They can then generate signals to drive motors or actuators that control the movement of the cam rollers. By integrating control systems, precise motion control, synchronization, and programmability can be achieved, enabling complex motion sequences and adaptive tracking capabilities.
  • Communication Protocols: Electronic or computer-controlled components can utilize various communication protocols to exchange data and commands with other system components. For example, in industrial automation applications, cam rollers may be integrated into a larger control network using protocols such as Modbus, CAN bus, or Ethernet. This integration enables seamless communication, coordination, and synchronization with other components or systems, enhancing overall system performance and functionality.
  • Human-Machine Interface (HMI): In applications where human interaction is involved, electronic or computer-controlled components can provide a user interface for monitoring and controlling the cam rollers. This interface can include touch screens, graphical displays, or control panels that allow operators to set parameters, monitor performance, and adjust settings as needed. The integration of HMIs with cam rollers simplifies operation, facilitates troubleshooting, and enhances user experience.
  • Data Logging and Analysis: Electronic or computer-controlled components can capture and log data related to the operation of cam rollers and the overall tracking system. This data can include parameters such as position, speed, acceleration, forces, and system status. By analyzing this data, performance trends, anomalies, and optimization opportunities can be identified. The integration of data logging and analysis capabilities enables proactive maintenance, performance optimization, and continuous improvement of the cam roller system.
  • Integration with Automation Systems: In automated systems, electronic or computer-controlled components can integrate cam rollers into the overall automation framework. This integration allows for seamless coordination with other automated processes, robotics, or material handling systems. By integrating cam rollers with automation systems, precise tracking, synchronized motion, and efficient production workflows can be achieved.

The integration of electronic or computer-controlled components with cam rollers brings advanced capabilities to modern applications. It enables precise control, adaptive tracking, real-time monitoring, data-driven optimization, and seamless integration with automation systems. This integration enhances the functionality, flexibility, and efficiency of cam roller systems, opening up possibilities for a wide range of applications in industries such as manufacturing, robotics, packaging, material handling, and more.

cam roller

Can cam rollers be customized for specific industries or machinery configurations?

Yes, cam rollers can be customized to meet the specific requirements of different industries or machinery configurations. The versatility and adaptability of cam rollers make them suitable for a wide range of applications. Customization allows for the optimization of cam rollers to match the unique needs of various industries and machinery configurations. Here’s a detailed explanation of how cam rollers can be customized:

  • Size and Dimensions: Cam rollers can be customized in terms of size and dimensions to suit specific machinery configurations. The outer diameter, inner diameter, width, and overall dimensions of the cam roller can be adjusted to fit within the available space and align with the requirements of the machinery or system.
  • Load Capacity: Customization of cam rollers can involve enhancing the load-carrying capacity to meet the demands of specific industries or heavy-duty applications. By utilizing different materials, heat treatments, or bearing arrangements, cam rollers can be designed to withstand higher radial and axial loads, ensuring reliable performance under challenging operating conditions.
  • Specialized Coatings and Materials: Certain industries or environments may require cam rollers with specialized coatings or materials to withstand corrosive or abrasive conditions. Customization can involve the application of coatings, such as corrosion-resistant coatings or low-friction coatings, to enhance the durability and performance of the cam rollers in specific operating environments.
  • Sealing Options: Cam rollers can be customized with various sealing options to provide protection against contaminants, dust, moisture, or other environmental factors. Custom sealing arrangements, such as rubber seals or labyrinth seals, can be incorporated into the design to ensure the longevity and reliability of the cam rollers in specific industries or applications.
  • Attachment and Mounting: Customization of cam rollers can include modifications to the attachment and mounting options. Different industries or machinery configurations may require specific attachment methods or mounting configurations. Cam rollers can be customized with different stud types, yoke configurations, or eccentric collar options to ensure easy and secure attachment to the moving parts of the machinery or system.
  • Specialized Performance Features: Depending on the industry or application, cam rollers may need specialized performance features. Customization can involve incorporating features such as integrated lubrication systems, temperature sensors, or shock-absorbing elements to enhance the performance, reliability, or monitoring capabilities of the cam rollers in specific industries or machinery configurations.

By collaborating with manufacturers or suppliers, industries can work to customize cam rollers to meet their specific requirements. Customization may involve engineering analysis, design modifications, and material selection to ensure the optimal performance and compatibility of the cam rollers with the targeted industries or machinery configurations.

In summary, cam rollers can be customized for specific industries or machinery configurations. Customization options include adjusting size and dimensions, enhancing load capacity, utilizing specialized coatings and materials, incorporating sealing options, modifying attachment and mounting methods, and adding specialized performance features. By tailoring cam rollers to specific industry or machinery needs, customization ensures optimal performance, longevity, and compatibility with the targeted applications.

cam roller

Can you explain the primary functions and roles of cam rollers in various applications?

Cam rollers, also known as cam followers or track rollers, serve a variety of functions and play crucial roles in various applications across different industries. These specialized roller bearings are designed to follow the surface profile of a cam or track, enabling them to transmit motion, provide guidance, support, and handle loads. Here’s a detailed explanation of the primary functions and roles of cam rollers in various applications:

  • Motion Transmission: One of the primary functions of cam rollers is to transmit motion from a rotating cam to a reciprocating or oscillating component. They are commonly used in applications such as engines, where they transfer the motion of the camshaft to the valves, controlling the opening and closing of the valves at the appropriate timing. Cam rollers ensure precise and reliable motion transmission in these systems.
  • Guidance and Support: Cam rollers are frequently utilized to provide guidance and support to moving components in mechanical systems. They help maintain proper alignment and prevent lateral movement or deflection. In conveyor systems, for example, cam rollers guide the movement of belts or chains, ensuring smooth and controlled operation.
  • Load Bearing: Cam rollers are designed to bear high loads and provide support in heavy-duty applications. They are commonly found in machinery and equipment where there is a need for reliable load-bearing capabilities. Construction machinery, material handling equipment, and industrial automation systems often rely on cam rollers to handle substantial loads and ensure stable and efficient operation.
  • Compensating for Misalignment: In some applications, cam rollers are employed to compensate for misalignment between components. The rolling motion of the cam follower allows it to adjust and accommodate slight deviations in the cam or track profile. This feature ensures smooth operation even when there are minor misalignments, improving the overall performance and reliability of the system.
  • Application-Specific Functions: Cam rollers can also serve application-specific functions based on the requirements of a particular system. For example, in printing and packaging machinery, cam rollers may be used to control the tension and guide the movement of printing substrates or packaging materials. In textile machinery, cam rollers may play a role in controlling the feeding and positioning of fabrics. The versatility of cam rollers allows them to be tailored to the specific needs of diverse applications.

The choice of cam roller design, size, and material depends on the specific demands of the application. Factors such as load capacity, speed, operating conditions, precision requirements, and environmental factors are taken into consideration when selecting the appropriate cam roller. Regular maintenance, including lubrication and inspection, is vital to ensure optimal performance and longevity of cam rollers in various applications.

In summary, cam rollers fulfill essential functions and play significant roles in a wide range of applications. They enable motion transmission, provide guidance and support, bear heavy loads, compensate for misalignment, and serve application-specific functions. Cam rollers contribute to the efficiency, reliability, and smooth operation of mechanical systems across diverse industries.

China high quality Stud Type Cam Followers Bearing with High Precision  China high quality Stud Type Cam Followers Bearing with High Precision
editor by CX 2024-04-15

China supplier Polished Precision Silicon Nitride Ceramic Roller Bearing

Product Description

Polished Precision Silicon Nitride Ceramic Roller Bearing

The prime features of silicon nitride ceramic roller bearing
1.Low density:  3.2 g/cm 3   with lightweight than most other technical ceramics
2. Superior hardness, it’s 1 of most hardest technical ceramic than others
3. Great wear resistance due to its exceptional hardness and self-lubricity
4. Low coefficient of thermal expansion and high thermal conductivity (20 W/m.k)
5. Great thermal shock resistance, it’s up to 1000ºC under the special atmosphere
6. High mechanical strength and well resistance to impact than other advanced ceramics
7. Heat & high-temperature resistance, The max. service temperature can be up to 1300ºC
8. Chemical and corrosion resistance, resistant to almost all inorganic acids and many organic acids
9. At the same time, Silicon nitride is a high-performance electrical insulation material

The specification of the ceramic roller bearing

Material option Silicon nitride(Si3N4), Zirconia (ZrO2),  Alumina(Al2O3), Silicon carbide(SiO2)
Forming methods Dry pressed, Ceramic injection molding, Hot pressed, ISO pressed
Specification OD can be from 1 to 50mm, length can be from 10mm to 800mm
Precision processing CNC machining, Precision grinding, Polishing, Lapping, 
Tolerance The tolerance of OD and ID can be 0.001mm,  the tolerance of length can be 0.001mm
Key parameters Roughness to be 0.02mm, Parallelism to be 0.001mm
Surface quality Free of cracks, foreign contamination, mirror surface better than Ra0.1

The description of silicon nitride ceramic roller bearing
Silicon nitride is a man-made compound synthesized through several different chemical reaction methods. Parts are pressed and sintered by well-developed methods to produce a ceramic with a unique set of outstanding properties. The material is dark gray to black in color and can be polished to a very smooth reflective surface, giving parts a striking appearance. High-performance silicon nitride materials were developed for automotive engine wear parts, such as valves and cam followers, and proven effective. The cost of the ceramic parts never dropped enough to make the ceramics feasible in engines and turbochargers. The very high-quality bodies developed for these demanding high-reliability applications are available today and can be used in many severe mechanical, thermal, and wear applications.

The typical application of silicon nitride ceramics
They are widely used for producing bearings, shaft, gas turbine blades, mechanical seal rings, and permanent molds, steam nozzle, the heated surfaces of engine components

The gallery of Si3N4 ceramic parts

 

Datasheet of Technical ceramics

Property Unit Material
Si3N4   99.5% Al2O3 99% Al2O3 96%
Al2O3
ZrO2
Density g/cm3 ≥3.20 ≥3.90 ≥3.85 ≥3.65 ≥6.0
Water absorption % 0 0 0 0
Hardness HV 1700 1700 1500 1300
Flexural strength Mpa ≥600 ≥379 ≥338 ≥320 ≥1200
Compressive strength Mpa ≥2500 ≥2240 ≥2240 ≥2000 ≥1990
Fracture toughness Mpa m1/2 6 4-5 4-5 3-4 6.5-8
Max. service temperature ºC 1200 1675 1600 1450 1000
Coefficient of thermal expansion (CTE) 1×10 -6 /ºC 3.2 6.5~8.0 6.2~8.0 5.0~8.0 8.0~9.5
Thermal shock T(ºC) ≥600 ≥250 ≥200 ≥220 ≥300
Thermal conductivity(25ºC) W/m.k 20 30 29 24 3
Volume resistivity ohm.cm          
25ºC >1 x 10 14 >1 x 10 14 >1 x 10 14 >1 x 10 11
300ºC 1 x 10 12 8 x 10 11 10 12 -10 13 1 x 10 10
500ºC 5 x 10 10 2 x 10 9 1 x 10 9 1 x 10 6
Insulation strength KV/mm   19 18 18 17
Dielectric constant(1Mhz) (E) 6 9.7 9.5 9.5 29

 

Our capability and strength

We have in-housing comprehensive manufacturing types of equipment, including forming, sintering,
CNC machining, precision grinding, laser cutting, and so on, it helps us to control the quality very well.
Also, it greatly benefits cost control.

The state of the art manufacturing equipment

Rigorous Quality-control System

Remark:
We have the complete quality-control system per ISO9001, including IQC, IPQC, QA, and OQC process.

Typical Packaging Proposal and Transportation Methods
1. Packaging proposal

2. Regular Transporation Methods

FAQs (Frequently Asked Questions)
Q1. Are you a factory or trading company?
A: We are a manufacturer with over 12 years of experience. You are welcome to visit our factory.

Q2: Do you send a sample to check?
A: Sure, the sample is free and freight collect.

Q3: When will you ship it?
A: If the products are in storage, we’ll ship within 48 hours

Q4: When can I get the price?
A: We regularly quote within 24 hours after we get your inquiry. If you are in urgent need of getting the price.
Please call us or tell us in your email so that we will proceed with your inquiry as a priority.

Q5: Is it available to provide customized products?
A: We always support custom-made demand as per different materials, dimensions, and designs.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Refractory, Structure Ceramic, Industrial Ceramic
Material: Silicon Nitride
Type: Ceramic Parts
Product Name: Silicon Nitride Ceramic Roller Bearing
Shaping Methods: Dry Pressed, ISO Pressed, Hot Pressed
Density: Over 3.2g/cm3
Samples:
US$ 50/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

cam roller

How do cam rollers contribute to the adaptability and versatility of tracking systems in various settings?

Cam rollers play a significant role in enhancing the adaptability and versatility of tracking systems across various settings. Their design and functionality enable them to meet the diverse requirements of different applications. Here’s a detailed explanation of how cam rollers contribute to the adaptability and versatility of tracking systems:

  • Multiple Track Configurations: Cam rollers can be utilized in various track configurations, such as linear tracks, curved tracks, or complex multi-axis tracks. This flexibility allows tracking systems to adapt to different motion patterns and trajectories required by different applications. Whether it’s a straight-line motion, circular path, or customized multi-axis motion, cam rollers can be configured to accommodate a wide range of tracking requirements.
  • Adjustable Cam Profiles: The design of cam rollers allows for adjustable cam profiles. Cam profiles determine the motion characteristics of the tracking system, including acceleration, deceleration, and dwell periods. By modifying the cam profiles, cam rollers can be customized to suit specific application needs. This adjustability enhances the adaptability of tracking systems, enabling them to handle different speed profiles, motion sequences, or tracking patterns.
  • Modular and Scalable Design: Cam rollers are often designed with a modular and scalable approach, allowing for easy integration into different systems and the ability to scale up or down based on application requirements. They can be combined with other components, such as motors, gearboxes, or sensors, to create a complete tracking system. This modular design facilitates the adaptability and versatility of tracking systems, enabling customization and quick reconfiguration as per changing needs.
  • Wide Range of Load Capacity: Cam rollers are available in various sizes and configurations, offering a wide range of load capacities. From lightweight applications to heavy-duty industrial settings, cam rollers can handle different loads and forces. This versatility allows tracking systems to adapt to diverse payload requirements, making them suitable for applications ranging from small-scale automation to large-scale material handling.
  • Compatibility with Different Environments: Cam rollers are designed to operate in various environmental conditions. They can withstand factors like temperature variations, dust, moisture, and contaminants commonly found in industrial or outdoor settings. This compatibility with different environments enhances the adaptability of tracking systems, enabling their deployment in diverse industries such as manufacturing, logistics, automotive, and aerospace.
  • Integration with Control Systems: Cam rollers can be seamlessly integrated with electronic or computer-controlled components, such as sensors, actuators, or programmable logic controllers (PLCs). This integration allows for precise control, synchronization, and automation of tracking systems. By incorporating control systems, cam rollers can adapt to dynamic operating conditions, respond to real-time feedback, and enable advanced tracking functionalities.
  • Compatibility with Various Object Shapes and Sizes: Cam rollers are designed to accommodate a wide range of object shapes, sizes, and materials. They can track objects of different geometries, from flat panels to irregularly shaped components. This compatibility with various object characteristics enhances the versatility of tracking systems, enabling them to handle diverse workpieces, products, or materials.

The adaptability and versatility of tracking systems are significantly enhanced by the use of cam rollers. Their ability to work with different track configurations, adjust cam profiles, modular design, load capacity, environmental compatibility, integration with control systems, and compatibility with various object shapes and sizes makes them a valuable component in a wide range of applications, providing adaptability, flexibility, and versatility to tracking systems in diverse settings.

cam roller

Can you provide examples of products or machinery that commonly use cam rollers?

Cam rollers are widely used in various products and machinery across different industries. Their unique design and functionalities make them suitable for applications that require precise motion, controlled tracking, and efficient operation. Here are some examples of products or machinery that commonly utilize cam rollers:

  • Printing Machinery: Cam rollers are commonly found in printing machinery, such as offset printers, flexographic printers, and digital printers. They are used to precisely guide the movement of paper or printing substrates through the printing process, ensuring accurate registration and consistent print quality.
  • Material Handling Systems: Cam rollers are extensively used in material handling systems, including conveyor systems, packaging equipment, and automated storage and retrieval systems (ASRS). They help in guiding and tracking the movement of items, pallets, or containers, ensuring smooth and controlled transportation within the system.
  • Industrial Robots: Cam rollers play a vital role in industrial robots, particularly in robotic arms and manipulators. They facilitate precise and controlled motion, allowing the robot to perform accurate positioning, pick-and-place operations, and assembly tasks with high repeatability and reliability.
  • Textile Machinery: Cam rollers are commonly utilized in textile machinery, such as weaving looms, knitting machines, and spinning machines. They assist in guiding the movement of yarns, threads, or fabrics, ensuring proper tension and alignment during the manufacturing process.
  • Automotive Manufacturing: Cam rollers are employed in various stages of automotive manufacturing, including assembly lines, paint booths, and body-in-white operations. They contribute to the smooth and precise movement of car bodies, parts, or components, enabling efficient production processes.
  • Packaging Machinery: Cam rollers are commonly integrated into packaging machinery, such as form-fill-seal machines, cartoners, and labeling machines. They assist in guiding the packaging materials, ensuring accurate positioning, and controlled movement during the packaging process.
  • Food Processing Equipment: Cam rollers find applications in food processing equipment, including filling machines, sorting systems, and packaging lines. They aid in the smooth and precise movement of food products, containers, or packaging materials, maintaining the integrity and quality of the processed food items.
  • Medical Devices: Cam rollers are utilized in medical devices and equipment, such as diagnostic machines, laboratory automation systems, and surgical robots. They contribute to the precise movement and positioning required for accurate diagnostic results, sample handling, or surgical procedures.

These examples represent just a few of the many products and machinery where cam rollers are commonly used. Their versatility, precision, and reliability make them suitable for a wide range of applications in industries like printing, material handling, robotics, textiles, automotive manufacturing, packaging, food processing, and medical devices.

In summary, cam rollers are widely employed in various products and machinery across different industries. Their usage in printing machinery, material handling systems, industrial robots, textile machinery, automotive manufacturing, packaging machinery, food processing equipment, and medical devices demonstrates their significance in achieving precise motion, controlled tracking, and efficient operation in diverse applications.

cam roller

Can you describe the factors to consider when selecting cam rollers for specific applications?

When selecting cam rollers for specific applications, several factors need to be considered to ensure optimal performance, reliability, and longevity. The suitability of a cam roller for a particular application depends on various parameters and requirements. Here’s a detailed explanation of the factors to consider when selecting cam rollers:

  • Load Capacity: One of the primary considerations is the anticipated load capacity of the cam roller. The cam roller should have sufficient load-carrying capacity to support the expected radial and axial loads in the application. It is important to consider both static and dynamic loads, as well as any potential shock or impact loads that may occur.
  • Speed and Acceleration: The speed at which the cam roller will operate, as well as the acceleration and deceleration rates, should be taken into account. High-speed applications require cam rollers that can accommodate the associated centrifugal forces and provide smooth rolling motion without excessive heat generation. Additionally, the roller should be able to handle the acceleration and deceleration forces without compromising performance.
  • Precision Requirements: Depending on the application, precision requirements may vary. Some applications demand high positioning accuracy and minimal deviation, while others may have looser tolerances. It is important to select a cam roller that can meet the desired precision requirements, ensuring accurate tracking and motion control.
  • Operating Conditions: Consider the operating conditions in which the cam roller will be used. Factors such as temperature, humidity, dust, and corrosive environments can impact the performance and longevity of the cam roller. Choose a cam roller that is designed to withstand the specific operating conditions of the application, ensuring durability and reliability.
  • Lubrication and Maintenance: Proper lubrication is crucial for the smooth operation and longevity of cam rollers. Consider the lubrication requirements of the cam roller and whether it has provisions for effective lubrication. Additionally, assess the maintenance needs and accessibility of the cam roller for periodic inspection, lubrication replenishment, and potential replacement.
  • Mounting and Attachment: Evaluate the mounting and attachment options available for the cam roller. Different applications may require stud-type cam rollers or yoke-type cam rollers, depending on the attachment method and space constraints. Ensure that the chosen cam roller can be securely mounted and aligned with the moving parts of the system.
  • Cost and Availability: Finally, consider the cost and availability of the cam roller. Evaluate the overall cost-effectiveness of the selected cam roller, taking into account its performance, longevity, and maintenance requirements. Additionally, ensure that the chosen cam roller is readily available from reliable suppliers to avoid delays or compatibility issues.

By considering these factors, you can select the most suitable cam roller for a specific application, ensuring optimal performance, reliability, and longevity. It is advisable to consult with manufacturers or industry experts to obtain guidance and recommendations tailored to your specific requirements.

In summary, the factors to consider when selecting cam rollers for specific applications include load capacity, speed and acceleration requirements, precision needs, operating conditions, lubrication and maintenance considerations, mounting and attachment options, as well as cost and availability. Assessing these factors will help in choosing the appropriate cam roller that meets the unique demands of the application.

China supplier Polished Precision Silicon Nitride Ceramic Roller Bearing  China supplier Polished Precision Silicon Nitride Ceramic Roller Bearing
editor by CX 2024-03-28

China high quality 6915 6916 6917 6918 6919 Precision Micro Bearing for Finger Wheel supplier

Product Description

Product Name

6919 2RS ZZ

Product category

Deep groove ball bearing

Product material

GR15 bearing steel 

Product advantage

High speed low noise stable operation of  High temperature resistance

Application program

Roller skates, motors, , spinning tops, automatic pumps, mixers,appliances

Customer order protection

Warranty for 1 year

Minimum order quantity

1 piece

 

open size(mm) Installation size (mm) weight weight
model Inner diameter Outer diameter Thickness Chamfer da da Da ra Si3N4 ZrO2
d D B r(min) min max max max (kg) (kg)
683 3 7 2 0.1   /     0.00013 0.00571
693 8 3 0.15   /     0.00571 0.0005
603 9 3 0.15   /     0.0004 0.0007
623 10 4 0.15   /     0.0007 0.0013
633 13 5 0.15   /     0.0014 0.0571
684 4 9 2.5 0.1 4.8 / 8.2 0.1 0.0003 0.0005
694 11 4 0.15 5.2 / 9.8 0.15 0.0007 0.0013
604 12 4 0.2 5.6 / 10.4 0.2 0.0009 0.0017
624 13 5 0.2 5.6 / 11.4 0.2 0.0013 0.571
634 16 5 0.3 6 / 14 0.3 0.0571 0.004
685 5 11 3 0.15 6.2 / 9.8 0.15 0.0005 0.0009
695 13 4 0.2 6.6 / 11.4 0.2 0.001 0.0019
605 14 5 0.2 6.6 / 12.4 0.2 0.0015 0.0571
625 16 5 0.3 7 / 14 0.3 0.0571 0.0038
635 19 6 0.3 7 / 17 0.3 0.0036 0.0066
686 6 13 3.5 0.15 7.2 / 11.8 0.15 0.0008 0.0015
696 15 5 0.2 7.6 / 13.4 0.2 0.0016 0.003
606 17 6 0.3 8 / 15 0.3 0.0571 0.0046
626 19 6 0.3 8 / 17 0.3 0.0034 0.0063
636 22 7 0.3 8 / 20 0.3 0.0058 0.5718
687 7 14 3.5 0.15 8.2 / 12.8 0.15 0.0009 0.0017
697 17 5 0.3 9 / 15 0.3 0.0571 0.004
607 19 6 0.3 9 / 17 0.3 0.0032 0.0059
627 22 7 0.3 9 / 20 0.3 0.0053 0.0098
637 26 9 0.3 9 / 24 0.3 0.01 0.0185
688 8 16 4 0.2 9.6 / 14.4 0.2 0.0014 0.0571
698 19 6 0.3 10 / 17 0.3 0.003 0.0056
608 22 7 0.3 10 / 20 0.3 0.005 0.0093
628 24 8 0.3 10 / 22 0.3 0.0072 0.013
638 28 9 0.3 10 / 26 0.3 0.012 0.571
689 9 17 4 0.2 10.6 / 15.4 0.2 0.0015 0.0571
699 20 6 0.3 11 / 18 0.3 0.0035 0.0065
609 24 7 0.3 11 / 22 0.3 0.006 0.011
629 26 8 0.3 11 / 24 0.3 0.0081 0.015
639 30 10 0.6 13 / 26 0.6 0.015 0.571
6800 10 19 5 0.3 12 12 17 0.3 0.0571 0.004
6900 22 6 0.3 12 12.5 20 0.3 0.0038 0.007
6000 26 8 0.3 12 13 24 0.3 0.0075 0.014
6200 30 9 0.6 14 16 26 0.6 0.013 0.571
6300 35 11 0.6 14 16.5 31 0.6 0.571 0.04
6801 12 21 5 0.3 14 14 19 0.3 0.0571 0.005
6901 24 6 0.3 14 14.5 22 0.3 0.0042 0.008
16001 28 7 0.3 14 / 26 0.3 0.0079 0.015
6001 28 8 0.3 14 15.5 26 0.3 0.0092 0.017
6201 32 10 0.6 16 17 28 0.6 0.015 0.571
6301 37 12 1 17 18 32 1 0.571 0.046
6802 15 24 5 0.3 17 17 22 0.3 0.571 0.005
6902 28 7 0.3 17 17 26 0.3 0.0063 0.012
16002 32 8 0.3 17 / 30 0.3 0.011 0.571
6002 32 9 0.3 17 19 30 0.3 0.013 0.571
6202 35 11 0.6 19 20.5 31 0.3 0.019 0.035
6302 42 13 1 20 22.5 37 1 0.035 0.064
6803 17 26 5 0.3 19 19 24 0.3 0.571 0.005
6903 30 7 0.3 19 19.5 28 0.3 0.0071 0.013
16003 35 8 0.3 19 / 33 0.3 0.014 0.571
6003 35 10 0.3 19 21.5 33 0.3 0.017 0.032
6203 40 12 0.6 21 23.5 36 0.6 0.571 0.052
6303 47 14 1 22 25.5 42 1 0.047 0.087
6403 62 17 1.1 23.5 / 55.5 1 0.11 0.21
6804 20 32 7 0.3 22 22.5 30 0.3 0.007 0.013
6904 37 9 0.3 22 24 35 0.3 0.015 0.571
16004 42 8 0.3 22 / 40 0.3 0.02 0.037
6004 42 12 0.6 24 25.5 38 0.6 0.571 0.052
6204 47 14 1 25 26.5 42 1 0.045 0.082
6304 52 15 1.1 26.5 28 45.5 1 0.06 0.11
6404 72 19 1.1 26.5 / 65.5 1 0.17 0.31
6805 25 37 7 0.3 27 27 35 0.3 0.009 0.016
6905 42 9 0.3 27 28.5 40 0.3 0.018 0.032
16005 47 8 0.3 27 / 45 0.3 0.571 0.045
6005 47 12 0.6 29 30 43 0.6 0.033 0.061
6205 52 15 1 30 32 47 1 0.054 0.099
6305 62 17 1.1 31.5 36 55.5 1 0.098 0.18
6405 80 21 1.5 33 / 72 1.5 0.22 0.41
6806 30 42 7 0.3 32 32 50 1 0.01 0.018
6906 47 9 0.3 32 34 57 1 0.571 0.04
16006 55 9 0.3 32 42.5 65.5 1 0.036 0.067
6006 55 13 1 35 36.5 53 1 0.048 0.089
6206 62 16 1 35 38.5 60 1 0.083 0.15
6306 72 19 1.1 36.5 42.5 68.5 1 0.14 0.27
6406 90 23 1.5 54 / 82 2 0.31 0.57
6807 35 47 7 0.3 37 37 45 0.3 0.011 0.571
6907 55 10 0.6 39 39 51 0.6 0.031 0.058
16007 62 9 0.3 37 / 60 0.3 0.045 0.082
6007 62 14 1 40 41.5 57 1 0.063 0.12
6207 72 17 1.1 41.5 44.5 65.5 1 0.12 0.22
6307 80 21 1.5 43 47 72 1.5 0.19 0.36
6407 100 25 1.5 43 / 92 1.5 0.4 0.73
6808 40 52 7 0.3 42 42 50 0.3 0.013 0.02
6908 62 12 0.6 44 46 58 0.6 0.05 0.09
16008 68 9 0.3 42 / 66 0.3 0.05 0.1
6008 68 15 1 45 47.5 63 1 0.08 0.15
6208 80 18 1.1 46.5 50.5 73.5 1 0.15 0.28
6308 90 23 1.5 48 53 80 1.5 0.27 0.49
6408 110 27 2 49 / 101 2 0.513 0.946
6809 45 58 7 0.3 47 47.5 56 0.3 0.016 0.571
6909 68 12 0.6 49 50 64 0.6 0.053 0.097
16009 75 10 0.6 49 / 71 0.6 0.07 0.13
6009 75 16 1 50 53.5 70 1 0.1 0.19
6209 85 19 1.1 51.5 55.5 78.5 1 0.175 0.32
6309 100 25 1.5 53 61.5 92 1.5 0.345 0.64
6409 120 29 2 54 / 111 2 0.64 1.18
6810 50 65 7 0.3 52 52.5 63 0.3 0.571 0.038
6910 72 12 0.6 54 55 68 0.6 0.06 0.1
16571 80 10 0.6 54 / 76 0.6 0.07 0.13
6571 80 16 1 55 58.5 75 1 0.11 0.2
6210 90 20 1.1 56.5 60 83.2 1 0.19 0.35
6310 110 27 2 59 68 101 2 0.44 0.82
6410 130 31 2.1 61 / 119 2 0.78 1.45
6811 55 72 9 0.3 57 59 70 0.3 0.03 0.06
6911 80 13 1 60 61.5 75 1 0.08 0.15
16011 90 11 0.6 59 / 86 0.6 0.11 0.2
6011 90 18 1.1 61.5 64 83.5 1 0.16 0.29
6211 100 21 1.5 63 66.5 92 1.5 0.26 0.48
6311 120 29 2 64 72.5 111 2 0.57 1.05
6411 140 33 2.1 66 / 129 2 0.95 1.76
6812 60 78 10 0.3 62 64 76 0.3 0.04 0.08
6912 85 13 1 65 66 80 1 0.08 0.15
16012 95 11 0.6 64 / 91 0.6 0.12 0.22
6012 95 18 1.1 66.5 69 88.5 1 0.17 0.32
6212 110 22 1.5 68 74.5 102 1.5 0.33 0.6
6312 130 31 2.1 71 79 119 2 0.72 1.32
6412 150 35 2.1 71   139 2 1.15 2.13
6813 65 85 10 0.6 69 69 81 0.6 0.05 0.1
6913 90 13 1 70 71.5 85 1 0.09 0.17
16013 100 11 0.6 69 / 96 0.6 0.13 0.23
6013 100 18 1.1 71.5 73 93.5 1 0.18 0.34
6213 120 23 1.5 73 80 112 1.5 0.42 0.77
6313 140 33 2.1 76 85.5 129 2 0.88 1.62
6814 70 90 10 0.6 74 74.5 86 0.6 0.056 0.1
6914 100 16 1 75 77.5 95 1 0.15 0.27
16014 110 13 0.6 74 / 106 0.6 0.18 0.34
6014 110 20 1.1 76.5 80.5 103.5 1 0.25 0.47
6214 125 24 1.5 78 84 117 1.5 0.45 0.84
6314 150 35 2.1 81 92 139 2 1.07 1.98
6815 75 95 10 0.6 79 79.5 91 0.6 0.06 0.11
6915 105 16 1 80 82 100 1 0.15 0.28
16015 115 13 0.6 79 / 111 0.6 0.19 0.36
6015 115 20 1.1 81.5 85.5 108.5 1 0.27 0.5
6215 130 25 1.5 83 90 122 1.5 0.5 0.92
6816 80 100 10 0.6 84 84.5 96 0.6 0.063 0.12
6916 110 16 1 85 87.5 105 1 0.16 0.3
16016 125 14 0.6 84 / 121 0.6 0.26 0.48
6016 125 22 1.1 86.5 91 118.5 1 0.36 0.67
6216 140 26 2 89 95.5 131 2 0.59 1.09
6817 85 110 13 1 90 90.5 105 1 0.11 0.2
6917 120 18 1.1 91.5 94.5 113.5 1 0.23 0.42
16017 130 14 0.6 89 / 126 0.6 0.27 0.5
6017 130 22 1.1 91.5 96 123.5 1 0.38 0.71
6217 150 28 2 94 102 141 2 0.73 1.35
6818 90 115 13 1 95 95.5 110 1 0.12 0.21
6918 125 18 1.1 96.5 98.5 118.5 1 0.24 0.45
16018 140 16 1 95 / 135 1 0.36 0.67
6018 140 24 1.5 98 103 132 1.5 0.5 0.92
6819 95 120 13 1 100 102 115 1 0.12 0.23
6919 130 18 1.1 101.5 104 123.5 1 0.25 0.46
16019 145 16 1 100 / 140 1 0.38 0.7
6019 145 24 1.5 103 109 137 1.5 0.51 0.95
6820 100 125 13 1 105 106 120 1 0.13 0.24
6920 140 20 1.1 106.5 111 133.5 1 0.35 0.64
16571 150 16 1 105 / 145 1 0.39 0.73
6571 150 24 1.5 108 113 142 1.5 0.54 0.99
6821 105 130 13 1 110 111 125 1 0.14 0.25
6921 145 20 1.1 111.5 116 138.5 1 0.36 0.66
6822 110 140 16 1 115 117 135 1 0.21 0.38
6922 150 20 1.1 116.5 121 143.5 1 0.37 0.69
6824 120 150 16 1 125 127 145 1 0.22 0.41

 

 

Product Description

 

 

Products Application

 

Deep groove ball bearing is the most representative rolling bearing, simple structure, user, wide use. This kind of bearing is non-separable bearing, its inner and outer ring raceway are arc groove type, can bear radial load and two-way axial load; Low friction coefficient, high limit speed, suitable for high-speed rotation and low noise, low vibration occasions. This kind of bearing is widely used in automobile, machine tool, electric machine, instrument, construction machinery, railway rolling stock, agricultural machinery and various professional machinery.
 

Recommend Products

Company Profile

Our Advantages

Certifications

Customer praise

Packaging & Shipping

FAQ

 

1. Where is our factory? We are based in ZheJiang , China, We are an integrated enterprise of industry and trade start from 2008,sell to Domestic Market(40.00%),South America(10.00%),Eastern Europe(10.00%),North America(5.00%),Southeast Asia (5.00%), Africa(5.00%),Mid East(5.00%),Eastern Asia(5.00%) Central America(5.00%),Northern Europe(5.00%),South, Asia(5.00%). Our brand is DMC.

2. How can we guarantee quality?
Before we mass-produce the goods. Provide the customer with a free sample list, sample confirmation is satisfied with the
customer, we according to the requirements of the customer mass production if the bearing goods received by the customer are not
satisfied, the product can be returned and replaced within a month.
3.What do you get from us?
We can provide all kinds of bearings OEM&ODM customiz
-ed service.
You will get an excellent supplier and excellent bearing price. We will help you revitalize your career and try our best to let
customers earn more money.

Aligning: Non-Aligning Bearing
Separated: Unseparated
Rows Number: Single
Load Direction: Radial Bearing
Material: Bearing Steel
Cage: Steel Cage.Brass Cage.Nylon Cage
Samples:
US$ 2.4/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

bearing

Types of Ball Bearings

There are several types of ball bearings: Double-row angular contact, Four-point contact, Self-aligning, and Ceramic hybrid. Here’s a brief description of each. For more information, read our article about Double-row angular contact ball bearings. You’ll be better informed about how they’re made. Also, learn about how the cages that hold the balls in place are secured with rivets.

Double-row, angular-contact bearing

Double-row, angular-contact ball bearings are similar in their contact surfaces in one direction, and the two pairs of bearings are installed axially opposite to one another. This design allows them to support combined loads in axial and radial directions. These types of bearings are used for high-precision, high-speed applications. They can be used in everything from turbines to dentistry equipment. Double-row, angular-contact bearings are available at Grainger, as are single-row versions.
Double-row, angular-contact ball bearings are a popular option for applications where high precision and high speed are required. The design features of these bearings are ideal for applications with axial space restrictions. In contrast, they are smaller than two single-row angular-contact bearings and are available in steel, polyamide, or brass cages. Whether you need a cage for high speed or hard operating conditions is up to you. If you are unsure about the right cage for your application, contact Schaeffler.
Single-row angular-contact ball bearings are the most common type of bearings. Double-row bearings are also available with a shielded outer ring, which protects the balls inside the bearing from external contaminants. Because these double-row bearings are a good choice for applications requiring high performance, they are often the most affordable option. They offer similar performance as single-row bearings but are much more rigid.
Preloading is a key performance characteristic for double-row angular-contact ball bearings. Preloading can decrease the service life of double-row angular-contact ball bearings by up to 380 percent. Alternatively, you can preload double-row angular-contact ball bearings by placing spacers between their outer rings. Good double-row angular-contact bearing installation will increase working accuracy and bearing life.

Four-point contact ball bearing

The Four Point Contact Ball Bearing Market can be segmented into three types: 35 Degree, 45 Degree, and Other. The 35 Degree segment is expected to witness the fastest growth over the next few years, owing to its increased operational speed and competence in axial and radial axis load handling. Other types of four-point contact ball bearings include the Miniature and Deep Groove varieties. These are widely used in automobiles, aerospace, and other industries.
These bearings are designed for oil-free screw compressors, and they feature an outer-ring guided brass cage to reduce friction and increase running accuracy. In addition, they have lower maintenance costs compared to conventional bearings. However, they have a higher mean roughness value than their counterparts. High-speed operations require high-speed bearings that can withstand fast speed changes. This is because of the higher friction rate, which results from four-point contact.
The Four-Point Contact Ball Bearing is a highly versatile product, as it can handle radial, thrust, and moment loads. Because of this, it is often the first choice for slow to moderate-speed applications. This design also has a simplified assembly process, requiring only a single double-half-turn to install. It is the first choice of many automotive OEMs because it is extremely efficient. If you want a ball bearing with these benefits, you should contact a local bearing company.
The Four-Point Contact Ball Bearing Market will continue to grow despite a tough economy and volatile trade conditions. Demand for automotive and aerospace components is expected to grow alongside a variety of technological advancements. Meanwhile, demand for energy-efficient products will continue to increase with changes in trade policy, an imbalance in the supply-side ecosystem, and geopolitical risk. And while all these factors will continue to drive the market growth, a few challenges are worth considering.
The Four-Point Contact Bearing is designed with the same basic structure as its two-point counterpart. In a four-point contact ball bearing, one ball can have four distinct points of contact with two rings. Two of these contact points may be in diagonal position. The two remaining contact points change position and accommodate radial loads. Consequently, the Four-Point Contact Bearing is more flexible and robust than its two-point counterparts.
bearing

Self-aligning ball bearing

The self-aligning ball bearing is an incredibly useful tool in many industries. This type of bearing has a sealing lip that makes contact with a smooth chamfer on the inner ring. Because of the self-aligning nature of these bearings, they are not prone to misalignment. They can withstand temperatures ranging from -30°C to 120°C and should not be heated prior to installation.
A self-aligning ball bearing is an elastomer-based spherical-shaped bearing with two rows of rolling elements. These bearings can accommodate large radial loads, and their outer ring raceway is curved to provide a spherical effect. The inner ring, or cage, can be either cylindrical or conical. The inner diameter of a self-aligning ball bearing is normally cylindrical, but some are conical. They typically have three oil holes.
When choosing a self-aligning ball bearing, look for a model with a large enough bearing diameter to accommodate the shaft’s bending. Self-aligning bearings may also be interchangeable with standard ball bearing assemblies. You can find individual values in manufacturer catalogues. These bearings are useful in limited applications, although they are not necessarily ideal for everything. For example, in applications where combined loads are the main concern, self-aligning ball bearings should only be used if the application requires minimal misalignment.
A self-aligning ball bearing is a highly-efficient, energy-efficient solution for a variety of applications. It is a simple, low-maintenance solution that makes your life easier. Its unique outer raceway allows restraining springs to absorb the deflection that is common in other bearings. The result is a cooler, smoother running vehicle. It also helps prevent misalignment, which makes it ideal for use in many applications.
The SKF self-aligning ball bearing is an excellent choice for applications involving heavy deflection of the shaft. They are the lowest-friction bearing available. Their steel plate reinforced seals prevent them from separating from the shaft during operation. They are also resistant to oil, making them the perfect solution for high-speed applications. In addition to this, they are designed to work in a wide range of temperatures.
bearing

Ceramic hybrid ball bearing

A hybrid ball bearing made from a combination of steel and ceramics is a good option for high-speed applications requiring electrical isolation. This combination offers an extended lifespan and minimal electrical corrosion or seizure risk. In addition, the hybrid ball bearings have less friction than steel bearings and can operate at low speeds. To learn more about this hybrid type of bearing, continue reading. We’ll also discuss how it can help your application.
Full ceramic balls are generally harder than steel, but they do have lower density, meaning they’re not subject to the same high centrifugal forces as steel balls. These benefits make ceramic ball bearings much more durable, with long lifespans. Both full and hybrid ceramic ball bearings are available from CZPT. Read on to learn more about each type. Here’s a look at some of the benefits of each. You’ll be pleasantly surprised.
A hybrid ball bearing consists of steel inner and outer rings and a ceramic ball. It can withstand high speeds and loads, but it’s also designed to operate in extreme temperatures. This hybrid ball bearing also requires minimal lubrication and is suitable for a variety of applications. Because of its unique characteristics, hybrid bearings are lightweight and hard, and they spin faster than steel balls. But how do you choose the right one for your application?
A ceramic ball bearing is better than a steel one for many applications. Its greater speed capability and lower friction allow it to operate at higher speeds than steel balls. It is also less sensitive to fluctuations in lubrication conditions than steel balls. They also tend to be cheaper, so it makes sense to invest in one. It’s worth your while. They last longer, and they don’t require a run-in period.
A hybrid ball bearing is the best choice for electric spindles with high speed and heavy loads. A hybrid ceramic ball bearing has the advantage of low heat and high stiffness, and can operate at high speeds and loads. This thesis explores the dynamic characteristics of a hybrid ceramic ball bearing, including analysis calculations and experiment verification. The results provide reliable data and lay the foundation for professional spindle optimum design tests. It is a worthy addition to any machine shop.

China high quality 6915 6916 6917 6918 6919 Precision Micro Bearing for Finger Wheel   supplierChina high quality 6915 6916 6917 6918 6919 Precision Micro Bearing for Finger Wheel   supplier
editor by CX 2023-11-12

China factory Super Precision Bearing Self-Aligning Ball Bearings manufacturer

Product Description

Self-Aligning ball bearings are 2 raceways in the inner and outer spherical roller between the
road, equipped with a spherical ball bearings.
There are cylindrical and tapered bore 2 structures, cage made of steel sheet, synthetic resin.
It features an outer ring raceway spherical shape, with auto-Mind, can compensate for misalignment
and shaft deflection caused by the error, but the inner and outer rings relative inclination of not more
than 3 degrees.

As a professional bearing company, HangZhou HONGSHI MACHINERYAND ELECTRICAL EQUIPMENTCO., Ltd is set
up on the basic of former company HangZhou HENGMAI BEARING Co., Ltd. Our good control team strictly follow
the quality principle and carry out scientific staff management for 7 years from forging materials, grinding
workshop test, heat treatment, fix bearing and good packing. The quality control report will be made according
to customer request. No matter before or after sales, from quality to price, we have the complete and professional
management system.

Our main products include spherical roller bearing, deep groove ball bearings, cylindrical roller bearings, spherical
roller bearings, needle roller bearings, ball bearing units, water pump bearings, automobile bearing, linear motion
bearing, oil-less bearings, bush and self-lubricating bearings, and non-standard bearings. Also, we supply bearings
to our domestic peeling machine factory and the machine exported to India, Malaysia and Russia, no any complaint
from customer until now.

“zero defect, zero complaints” as the quality objective.

Contact Angle: 45°
Aligning: Non-Aligning Bearing
Separated: Unseparated
Rows Number: Single
Load Direction: Axial Bearing
Material: Bearing Steel
Customization:
Available

|

Customized Request

bearing

Choosing the Right Ball Bearing for Your Application

When choosing a Ball Bearing, there are several things to consider. These factors include: the size, lubricant type, presence of corrosive agents, stray electrical currents, and more. It can be challenging to choose the right type, size, and type of ball bearing for your application. You should also carefully calculate the loads to determine the right size. Here are some tips for choosing the right Ball Bearing for your application.

Single-row

The single-row ball bearing is one of the most popular types of bearings. The inner and outer ring are designed with raceway grooves that are shaped slightly larger than the balls. This type of bearing has a low torque and can handle high-speed applications with minimal power loss. The radial dimensions of single-row ball bearings also vary, so it is possible to find one that fits your specific application. Besides the above-mentioned advantages, single-row ball bearings are also available with varying grease levels and are widely applicable to applications where the space is limited.
Single-row ball bearings are also called angular-contact ball bearings. Because of their single-row design, they are not separable and can accommodate a high-speed, heavy-duty application. Single-row angular-contact ball bearings can only handle axial load in one direction, and they must be installed in pairs for pure radial loads. Single-row ball bearings are a popular type of rolling bearings and can be used for a wide range of applications.

Self-aligning

The self-aligning ball bearing was invented by Sven Wingquist, a plant engineer for a textile company in Sweden. While he was responsible for making production as efficient as possible, he soon realized that the machinery he had in place wasn’t working as efficiently as it could. Although ball bearings are great for reducing friction, they were not flexible enough to compensate for misalignments in the machine.
Self-aligning ball bearings have two rows of balls and a common sphered raceway. The inner ring is curved and combines the two rows of balls into one cage. These bearings can tolerate shaft misalignment and compensate for static angular defects. They can be used in simple woodworking machinery, ventilators, and conveying equipment. They are often the preferred choice for applications where shaft alignment is an issue.

Ceramic

A Ceramic ball bearing is a type of high-performance bearing that is available in both full-ceramic and hybrid forms. The main differences between ceramic and steel ball bearings are their construction, lubrication, and mobility. High-quality ceramic ball bearings are durable, and they are ideal for corrosive and high-temperature applications. The material used to create these bearings helps prevent electrolytic corrosion. They are also ideal for reducing the friction and lubrication requirements.
Ceramic balls are harder and less brittle than steel balls, which gives them a higher degree of rigidity. Ceramics also have a higher hardness, with a hardness of Rc75-80 compared to Rc58-64 for steel balls. Their high compressive strength is approximately 5 to 7 times greater than steel. In addition, they have a very low coefficient of friction, which allows them to spin at higher speeds and with less friction. This increases their lifespan and durability, and decreases the energy needed to turn cranks.

Steel

Unlike traditional bearings, steel balls have a relatively uniform hardness. Carbon steel, for instance, is 2.1% carbon by weight. According to the American Iron and Steel Institute, copper content must be no more than 0.40% and manganese content should not be more than 1.65 g/cm3. After carbonizing, steel balls undergo a process called sizing, which improves their roundness geometry and hardness.
The main differences between steel ball bearings and ceramic ball bearings can be traced to their different materials. Ceramic balls are made from zirconium dioxide or silicon nitride. Silicon nitride is harder than steel and resists shocks. The result is increased speed and longer service life. Polyoxymethylene acetal (PMMA) bearing balls are known for their stiffness, strength, and tolerance, but are not as common as steel ball bearings.

Plastic

The most popular types of plastic ball bearings are made of polypropylene or PTFE. These bearings are used in applications requiring higher chemical resistance. Polypropylene is a structural polymer that offers excellent physical and chemical properties, including excellent resistance to organic solvents and degreasing agents. Its lightweight, low moisture absorption rate, and good heat resistance make it an excellent choice for high-temperature applications. However, plastic bearings are not without their drawbacks, especially when operating at very high temperatures or under heavy loads.
Compared to metal bearings, plastic ball-bearings do not require lubrication. They also are highly corrosion-resistant, making them an excellent choice for wash-down applications. They are also post-, autoclave-, and gamma sterilizable. Many conventional steel ball-bearings cannot handle the high temperatures of food processing or swimming pools. In addition to high temperature applications, plastic ball bearings are resistant to chemicals, including chlorine.
bearing

Glass

Plastic sliding bearings are molded bearings made of engineering plastic. With self-lubricating modification technology, these bearings can be produced by injection molding of plastic beads. They are widely used in various industries such as office equipment, fitness and automotive equipment. In addition to plastic bearings, glass balls are used in a variety of other applications, including medical equipment. Glass ball bearings have excellent corrosion resistance, excellent mechanical properties, and are electrically insulators.
Plastic ball bearings are made of all-plastic races and cages. These bearings are suitable for applications that are exposed to acids and alkalis. Because they are cheaper than glass balls, plastic ball bearings are popular in chemical-exposed environments. Stainless steel balls are also resistant to heat and corrosion. But the main disadvantage of plastic ball bearings is that they are not as strong as glass balls. So, if weight and noise is your main concern, consider using plastic balls instead.

Miniature

The global miniature ball bearing market is expected to reach US$ 2.39 Billion by 2027, at a CAGR of 7.2%. Growth in the region is attributed to technological advancement and government initiatives. Countries such as India and China are attracting FDIs and emphasizing the establishment of a global manufacturing hub. This is boosting the market for miniature ball bearings. The miniscule ball bearings are manufactured in small quantities and are very small.
Some manufacturers produce miniature ball bearings in different materials and designs. Chrome steel is the most popular material for miniature ball bearings because of its high load capacity, low noise properties, and lower cost. But the cost of stainless steel miniature bearings is low, since the amount of steel used is minimal. Stainless steel miniature bearings are the smallest in size. Therefore, you can choose stainless steel mini ball bearings for high-speed applications.

Angular-contact

Angular-contact ball bearings have three components: a cage, inner ring, and balls. Angular-contact ball bearings can support high axial and radial loads. Various design and manufacturing attributes make angular-contact ball bearings suitable for a variety of applications. Some features of this bearing type include a special lubricant, different cage materials, and different coatings.
The size of an angular-contact ball bearing is determined by the design units: outer ring width, axial load, and radial load. Depending on the type of application, an angular-contact ball bearing may be manufactured in double-row, triple-row, or quadruple-row configurations. Angular contact ball bearings can be classified according to their design units, which range from metric to imperial. A higher ABEC number means tighter tolerances. To determine the tolerance equivalent of a particular bearing, consult a standard Angular-contact ball bearing table.
Angular-contact ball bearings feature high and low-shoulder configurations. They have two-dimensional races that accommodate axial and radial loads. They are available in self-retaining units with solid inner and outer rings, and ball and cage assemblies. Cages made of cast and wrought brass are the most popular, but lightweight phenolic cages are also available. The latter is a better choice because it doesn’t absorb oil and has lower rolling friction.
bearing

Materials

When it comes to the construction of a ball bearing, high-quality raw materials are a crucial component. These materials not only affect the overall quality of a ball bearing, but also influence the cost. That’s why you should pay close attention to raw material quality. In addition to that, raw materials should be tested several times before the manufacturing process to ensure quality. Read on for some information about the different types of materials used to make ball bearings.
Steel is the most common material for ball bearings. Most ball bearings contain stainless steel balls, which are remarkably corrosion-resistant. They are also resistant to saltwater and alkalis. However, stainless steel balls are heavier than plastic ones, and they are also magnetic, which may be a drawback in some applications. If you’re looking for a metal-free option, glass balls are the way to go. They’re sturdy, lightweight, and resistant to a wide range of chemicals.

China factory Super Precision Bearing Self-Aligning Ball Bearings   manufacturerChina factory Super Precision Bearing Self-Aligning Ball Bearings   manufacturer
editor by CX 2023-06-12

China wholesaler CZPT Angular Contact Ball Bearing High Precision 30tac62bsu Ball Bearings bearing driver

Product Description

Welcome to choose KORTON INDUSTRIAL LIMITED. 

NO 1. our adwantages:

1. 14 years bearing products manufacturing and 4 years exporting experiences.
2. OEM order and non-standard bearing order can be accepted.
3. Our main bearing products include Deep groove ball bearings, tapered roller bearings, cylindrical roller bearings, angular contact bearings, needle roller bearings, thrust ball bearings, spherical plain bearings, spherical bearings, automotive bearings pump bearings, and many nonstandard bearings are also in our product range.
4. Sample available
 
NO 2. Description: Angular Contact Ball Bearing

Race: we use the most advanced technology-cold extrusion process. Besides, the race will make two or three times temper to guarantee its high precision.

Rolling element: we use the rolling technology to process the roller and the steel ball of high precision bearing, the most advantage of our technology is to promote productive and productive efficiency. At the same time, our technology can prolong the bearing working life. The hardness and the diamention stability will also promote.

Steel cage: in order to avoid avoid cracks and guarantee the hardness, we use pattern “high temperature+long time”, our cage of high precision bearing have reached advanced level in china at surface abrasion resistance and fatigue strength.
–  Back-to-bacd arrangement (DB)
– Face to face arrangement (DF)
– Tandem arrangement (DT)
– Stamping steel cage (J)
– Stamping brass cage (Y)
– Nylon cage (TVP)
– High hardness fiber holder (TPA)
– One brass cage (MP)
 
 NO 3. OEM all brand bearing

1. deep groove ball bearing 6000,6200,6300,6400,61800,61900,Z,RS,ZZ,2RS
2. spherical roller bearing 22200,22300,23000,24000,23100,24100,CA,CC,E,W33
3. cylindrical roller bearing N,NU,NJ,NN,NUP,E,ECP,ECM,ECJ
4. taper roller bearing 35710,30300,32200,32300,31300,32000
5. Aligning ball bearing 1200,1300,2200,2300,
6. needle roller bearing NA,NAV,NK,NKI,RNA,NK,RNAV,ZKLF,ZKLN,ZARF,ZARN
7. thrust ball bearing 51100,51200,51300,51400,E,M
8. angular contact ball bearing7000,7100,7200,7300,AC,BECBM,C 
9. spherical plain bearing GE,GEG,GEEW,U,UC,UG,GX,GAC,SA,SABP
10.Wheel hub bearing /ceramic bearing/plastic bearing/lazy susan bearing
 
 NO 4. Angular Contact Ball Bearing Specification: 

Seals Types 2RS,OPEN
Vibration Level Z1V1,Z2V2,Z3V3
Clearance C2,C0,C3,C4,C5
Tolerance Codes ABEC-1,ABEC-3,ABEC-5
Materral GCr15-China/AISI52100-USA/Din100Cr6-Germany
MOQ 1Set at least
Delivery Time 5-15 days after contract
Payment Terms TT/PAPAL/WESTERN UNION
Package Tube package+outer carton+pallets;
Single box+outer carton+pallets;
Tube packge+middle box+outer carton+pallets;
According to your requirement

NO 5. Angular contact ball bearing Models and Size:
 

      (r/min)        
  Principal dimensions     Speed ratings   Basic load ratings   (kg)
Bearing NO. d D B     (kN) (kN) Mass
        Grease Oil Dynamic Static  
7000AC 10 26 8 19000 28000 4.75 2.12 0.018
7000C 10 26 8 19000 28000 4.92 2.25 0.018
7001AC 12 28 8 18000 26000 5.2 2.55 0.02
7001C 12 28 8 18000 26000 5.42 2.65 0.02
7002AC 15 32 9 17000 24000 5.95 3.25 0.571
7002C 15 32 9 17000 24000 6.25 3.42 0.571
7003AC 17 35 10 16000 22000 6.3 3.68 0.036
7003C 17 35 10 16000 22000 6.6 3.85 0.036
7004AC 20 42 12 14000 19000 10 5.78 0.064
7004C 20 42 12 14000 19000 10.5 6.08 0.064
7005AC 25 47 12 12000 17000 11.2 7.08 0.074
7005C 25 47 12 12000 17000 11.5 7.45 0.074
7006AC 30 55 13 9500 14000 14.5 9.85 0.11
7006C 30 55 13 9500 14000 15.2 10.2 0.11
7007AC 35 62 14 8500 12000 18.5 13.5 0.15
7008AC 40 68 15 15000 21000 16 12.9 0.21
7009C 45 75 16 14000 19000 19.87 16.36 0.24
7009AC 45 75 16 14000 19000 19.87 16.36 0.24
7571C 50 80 16 13000 17000 21 19 0.26
7571AC 50 80 16 13000 17000 21 19 0.26
7011C 55 90 18 12000 15000 26.1 22.6 0.36
7011AC 55 90 18 12000 15000 26.1 22.6 0.36
7012C 60 95 18 11000 14000 32.5 27 0.45
7012AC 60 95 18 11000 14000 32.5 27 0.45
7013C 65 100 18 9900 13000 35.2 30 0.5
7013AC 65 100 18 9900 13000 35.2 30 0.5
7014C 70 110 20 9200 12000 41.1 37.3 0.59
7014AC 70 110 20 9200 12000 41.1 37.3 0.59
7015C 75 115 20 8600 11000 42.5 40.7 0.69
7015AC 75 115 20 8600 11000 42.5 40.7 0.69
        (r/min)        
  Principal dimensions     Speed ratings   Basic load ratings   (kg)
Bearing NO. d D B     (kN) (kN) Mass
        Grease Oil Dynamic Static  
7016C 80 125 22 8000 11000 53.4 50.6 0.93
7016AC 80 125 22 8000 11000 53.4 50.6 0.93
7017C 85 130 22 7600 10000 54.6 53.7 0.95
7017AC 85 130 22 7600 10000 54.6 53.7 0.95
7018C 90 140 24 7100 9500 68.6 65.4 0.96
7018AC 90 140 24 7100 9500 68.6 65.4 0.96
7019C 95 145 24 6800 9000 73.5 73 1.17
7019AC 95 145 24 6800 9000 73.5 73 1.17
7571C 100 150 24 6400 8600 75.5 77 1.25
7571AC 100 150 24 6400 8600 75.5 77 1.25
7571C 105 160 26 6100 8100 88 89.5 1.53
7571AC 105 160 26 6100 8100 88 89.5 1.53
7571C 110 170 28 5800 7700 101 101 1.91
7571AC 110 170 28 5800 7700 101 101 1.91
7571C 120 180 28 5300 7100 103 108 2.04
7571AC 120 180 28 5300 7100 103 108 2.04
7026C 130 200 33 4900 6500 129 137 3.73
7026AC 130 200 33 4900 6500 129 137 3.73
7571C 140 210 33 4500 6000 132 145 3.96
7571AC 140 210 33 4500 6000 132 145 3.96
7030C 150 225 35 4200 5600 151 168 4.82
7030AC 150 225 35 4200 5600 151 168 4.82
7200AC 10 30 9 18000 26000 5.58 2.82 0.03
7200C 10 30 9 18000 26000 5.82 2.95 0.03
7201AC 12 32 10 17000 24000 7.1 3.35 0.035
7201C 12 32 10 17000 24000 7.35 3.52 0.035
7202AC 15 35 11 16000 22000 8.35 4.4 0.043
7202C 15 35 11 16000 22000 8.68 4.62 0.043
7203AC 17 40 12 15000 20000 10.5 5.65 0.062
7203C 17 40 12 15000 20000 10.8 5.95 0.062
        (r/min)        
  Principal dimensions     Speed ratings   Basic load ratings   (kg)
Bearing NO. d D B     (kN) (kN) Mass
        Grease Oil Dynamic Static  
7204C 20 47 14 25000 34000 15 8.6 0.1
7204AC 20 47 14 25000 34000 15 8.6 0.1
7204B 20 47 14 25000 34000 13.31 7.65 0.12
7205C 25 52 15 21000 28000 16.2 10.3 0.13
7205AC 25 52 15 21000 28000 16.2 10.3 0.13
7205B 25 52 15 21000 28000 14.03 8.63 0.14
7206C 30 62 16 18000 24000 16.94 12.14 0.2
7210C 50 90 20 12000 15000 32.91 26.83 0.45
7210AC 50 90 20 12000 15000 32.91 26.83 0.45
7211AC 55 100 21 11000 14000 40.71 33.96 0.6
7212AC 60 110 22 9700 13000 46.9 40.53 0.81
7213AC 65 120 23 9000 12000 53.67 46.22 1.01
7214AC 70 125 24 8300 11000 56.04 49.52 1.08
7215AC 75 130 25 7800 10000 60.91 54.34 1.68
7216AC 80 140 26 7300 9700 68.81 63.35 1.48
7217AC 85 150 28 6900 9100 77.5 72.6 1.88
7218AC 90 160 30 6500 8600 89.91 82.6 2.26
7219AC 95 170 32 6100 8100 96.5 88.8 2.78
7220AC 100 180 34 5800 7700 111.2 96.8 3.32
7221AC 105 190 36 5500 7300 119.2 105.6 3.95
7222AC 110 200 38 5200 6900 129.6 118.4 4.65
7224AC 120 215 40 4800 6400 139.2 132.8 5.49
7226AC 130 230 40 4400 5800 156.8 156.8 6.21
7228AC 140 250 42 4000 5300 174.4 187.2 7.76
7230AC 150 270 45 3700 5000 248 280 9.75
7232AC 160 290 48 2400 2600 230 263 12.1
7234AC 170 310 52 2400 2400 272 331 15.1
7236AC 180 320 52 2200 2400 303 390 18.1
7238AC 190 340 55 2000 2200 303 390 18.8
7240AC 200 360 59 1800 2000 324 423 22.4

Bearing No.  Dimensions(mm)   ( KN)     Weight
New Model  ZZ     2RS     d     D     B     Cr     Cor   Mass(kg)
    3200A     3200zz   32002RS 10 30 14.3 7 3.8 0.049
    3201A     3201zz     32012RS 12 32     15 9     9 2     5 1 0.057
    3202A     3202zz   32571RS 15 35 15.9 10 6.1 0.064
    3203A     3203zz   32032RS 17 40 17.5     12 8     7 9 0.096
    3204A     3204zz   32042RS 20 47 20.6 19 12.1 0.153
    3205A     3205zz   32052RS 25 52 20.6 20.6     14 3 0.175
    3206A     3206zz   32062RS 30 62 23.8 28.6 20.4 0.286
    3207A     3207zz     32072RS 35 72 27 38 27.8 0.436
    3208A     3208zz   32082RS 40 80 30.2 42.5 32.5 0.59
    3209A     3209zz     32092RS 45 85 30.2     48 0 37 0.64
    3210A     3210u   32102RS 50 90 30.2 51     42  0.689
    3211A     3211zz     32112RS 55 100 33.3     63 0 53  0.986
    3212A     3212zz   32122RS 60 110 36.5 71.5 58.5 1.270
    3213A     3213zz     32132RS 65 120     38 1 83.5 72.5 1.570
    3214A     3214zz   32142RS 70 125 39.7 87.5 79.5 1.800
    3215A     3215zz     32152RS 75 130 41.3 90 80.5  1.900
    3216A     3216zz   32162RS 80 140 44.4 106 95.5 2.39
    3217A     3217zz   32172RS 85 150 49.2 112 106 3.06
    3218A     3218zz   32182RS 90 160 52.4 140 129 3.73
    3219A     3219zz     32192RS 95 170     55 6 163 184  5.100
    3220A     3220zz   32202RS 100 180 60.3 210 240 6.14
    3300A     3300zz     33002RS 10 35 19 9.2 5.1 0.092
    3301A     3301zz   33012RS 12 37 19 10 6.1 0.109
    3302A     3302zz   33571RS 15 42 19     12 8 7.9 0.132
    3303A     3303zz   33032RS 17 47 22.2 20.4 12.1 0.181
    3304A     3304zz     33042RS 20 52     22 2 20.6 127 227
    3305A     3305zz   33052RS 25 62 25.4 30.5 20.5 0.362
    3306A     3306zz     33062RS 30 72 302 39.5 27.5 0 553
    3307A     3307zz   33072RS 35 80 34.9 49.5     35 0.766
    3308A     3308zz     33082RS 40 90 36.5     60 5 44 1.01
    3309A     3309zz   33092RS 45 100 39.7 72.5 54 1.34
    3310A     3310zz   33102RS 50 110 44.4 85.5 64.5 1.81
    3311A     3311zz   33112RS 55 120 49.2 106 82 2.32
    3312A     3312zz   33122RS 60 130 54 122 95.5 3.05
    3313A     3313zz   33132RS 65 140 58.7 138 109 3,960
    3314A     3314zz     33142RS 70 150 63.5 155 125 4.74
    3315A     3315zz   33152RS 75 160 68.3 168 141 5.65
    3316A     3316zz     33162RS 80 170 68.3 175 151 7.21
    3317A     3317zz   33172RS 85 180 73 196 240 8.3
    3318A     3318zz     33182RS 90 190 73 225 266 9.01

 

Why Choose Us:

 
SFNBbearing company has 14 years manufacture experience and is one of the biggest adjustment center in north of China.
 
We have large stock of original brand and our own brand bearing.
 
Sample is available.
 
We can accept OEM service.
 
SFNBBearing Co., Ltd. Was founded in March 2008. We were principally engaged in the research, development and manufacture of bearings in the early stage. Now we are mainly engaged in the sales of internationally-famous brand bearings. Our products are sold in Britain, America, Japan, Italy and Southeast Asia, well appreciated by their purchasers.

Shipping Cost:

Estimated freight per unit.



To be negotiated
Contact Angle: 15°
Aligning: Non-Aligning Bearing
Separated: Unseparated
Customization:
Available

|

Customized Request

What is a bushing?

If you’ve ever wondered what an enclosure is, you’ve come to the right place. This article will provide an overview of different types of housings, including air-insulated, oil-impregnated porous bronze, and epoxy-impregnated capacitor cells. After reading this article, you will be better equipped to make an informed choice about the type of bushings your truck needs.
bushing

air insulating sleeve

When choosing bushings for your electrical application, you need to look for bushings with long-lasting insulation. In addition to being durable, bushings must have the correct design shape and material to remain effective over time. Porcelain was used in early casing designs and was chosen for indoor and outdoor applications due to its low cost and low linear expansion. Porcelain also requires a lot of metal fittings and flexible seals to remain effective.
Solid bushings have a center conductor and a porcelain or epoxy insulator. They are used in low voltage electrical applications such as small distribution transformers and circuit switches. However, their low radial capacity limits their use in high-voltage applications, so they are limited to circuit switches and other low-voltage equipment. The electrical service duty of the bushing determines the type of insulation required.
Another type of air-insulated bushing is made of conductive metal, which reduces heat transfer. This design enables it to operate over a range of temperature conditions. Additionally, air-insulated bushings are generally more effective than gas-insulated bushings in a range of applications. The main difference between air-insulated bushings and gas-insulated bushings is the insulating material. While gas-insulated bushings are usually made of high-quality materials, high-quality materials are still preferred in some applications.
Elliott # B series insulators are 25 kV class and pressure molded cycloaliphatic epoxy resins. They feature knurled brass inserts and 16 UNC threads. If you choose this type, make sure it matches the exact diameter of your Elliott Class 25 kv air insulated bushing. These insulators also provide overall shielding and require openings to fit inch diameters.
There are two types of air-insulated bushings: air-to-air and oil-to-oil. Oil is a stronger dielectric than air, and air-to-oil bushings are used to connect atmospheric air to oil-filled equipment. They are available for solid and capacitive hierarchies. So, which one is right for you? Just choose the right insulation to make your equipment as efficient as possible.

Oil Impregnated Porous Bronze Bushings

Oil-impregnated porous bronze (PbB) bushings are one of the best options for lubricating metal bearings. Lubrication is maintained even in high temperature applications as oil penetrates into the pores of the bronze. They are also self-lubricating and maintenance-free. Manufactured by CZPT, the Oil Impregnated Bronze Bushing is a powder metal process that is uniformly lubricated by a uniform oil film. This type of bearing is one of the most efficient in terms of precision performance.
One major difference between oil-impregnated bronze bushings and standard cast bronze bushings is their manufacturing process. Oil-impregnated bronze bushings are pressed from powder and then sintered to form a hardened part. This method is very effective for high-volume manufacturing, but it also has its limitations. Oil-impregnated bronze bushings are cheaper and more efficient, but they have mechanical limitations.
The production of oil-impregnated porous bronze bushings is simple. Powder bronze bushings are pressed and vacuum sealed by forcing oil into the pores. The low stress properties of oil-impregnated bronze bushings make them easier to manufacture in high volume. It also does not require additional lubrication. However, oil-impregnated porous bronze bushings have relatively low mechanical strength and are not recommended for applications where high temperatures are present.
Oil Impregnated Porous Bronze is also known as BPPB. Unlike traditional oil-impregnated bronze bushings, BPPB bushings have a high oil retention capacity. This means they will last a long time and you will save a lot of maintenance costs. But be careful. Porous bronze bushings can only last so long without oil.
Oil-impregnated bronze bushings are a good choice if dimensional consistency is important. BP bronze bushings have the same C dimension as solid metal bushings. While the CZPT is a ghost of the past, there are now many powder metal manufacturers producing BP housings. Their C of F values ​​range from 0.04 to 0.08.
bushing

Epoxy Impregnated Capacitor Batteries

Epoxy impregnated condenser core sleeves are conductive paper used in air conditioning systems. The paper core is coated with epoxy resin and the insulating shell is silicone rubber. RIP bushings have excellent electrical properties, are fire resistant and are relatively small. However, the process of making these products is not easy and mistakes are common. These defects manifest as cracks or other structural damage in the capacitor cells.
RIF (Resin Impregnated) bushings feature a finely graded design. The capacitor core is made of glass fiber impregnated with epoxy resin. The outer insulation is made of silicone rubber sheds glued directly to the capacitor core. These bushings are designed for small clearances, so no filler material is required.
In order to determine whether the RIP sleeve is void-free and dry, the insulating paper must be impregnated with epoxy resin. The process is similar to making conventional condenser core sleeves, but with greater flexibility and robustness. The main difference between RIP bushings and conventional insulators is the epoxy content.
Capacitor grading bushings are also available. These bushings increase the electric field at the ends of the capacitor core plates. The higher the temperature, the higher the electric field. These properties make resin-impregnated capacitor mandrel sleeves reliable. However, capacitor grade bushings have higher electric fields than nonlinear bushings.
The capacitor core of the present invention is made by winding paper around the winding tube 3 . The paper may contain an intermediate conductive foil. The winding tube is then covered with electrical insulator. Afterwards, the capacitor core 1 will be RIP and electrically connected to the electrical conductor 6 .
To further characterize the performance of RIPs, thermal shock current (TSC) was used to determine their trap parameters. Unmodified epoxy resin and nano-SiO2 modified RIP were tested. The RIP samples were polarized under a 2 kV/mm electric field at 333 K for 10 min and then subcooled to 193 K with liquid nitrogen. TSC curves were obtained at 3 K/min and 383 K.
bushing

plastic bushing

Plastic bushings are essential for many industries. They protect wires and other mechanical parts. They come in many shapes and sizes and are often used as adapters when connecting two pipes or tubes of different diameters. They are available in a variety of materials including rubber, steel and various other plastics. Most bushings are cylindrical or conical in shape and made of shock absorbing material. They slide on rods or pipes to provide low friction motion.
Plastic bushings can be made from a variety of materials, including phenolic, polyethylene, and nylon. While phenolic resins have long been the preferred choice for heavy-duty applications, nylon is the most commonly used lining plastic. Nylon has several advantages, including low friction, no lubrication, quiet operation, and low wear. In addition to these advantages, it is easy to form and cast. In order to obtain better mechanical properties, fillers such as molybdenum disulfide can be added to the material. Plus, filled nylon parts resist deformation at temperatures up to 300 degrees Fahrenheit.
Another benefit of plastic bushings is their low cost. Much cheaper than metal, plastic is a versatile material that can be used in a variety of industries. A quick installation and replacement process makes them the first choice for users who need to install new components quickly. Plus, plastic bushings don’t wear out as quickly as metal, which is another benefit. And because the wear rate of plastic bushings is predictable, manufacturers can easily replace them before they start to fail. And they last longer, so you save time and money.
Plastic bushings are widely used in machinery with sliding and rotating shaft components. They have excellent load-carrying capacity and anti-friction properties. They are essential to many industries, including construction, mining, agriculture, hydropower, transportation and food processing. They are easy to install and come in a variety of sizes and shapes. They are very durable and very reliable. They reduce machine wear and are less expensive than bearings.

China wholesaler CZPT Angular Contact Ball Bearing High Precision 30tac62bsu Ball Bearings   bearing driverChina wholesaler CZPT Angular Contact Ball Bearing High Precision 30tac62bsu Ball Bearings   bearing driver
editor by CX