Tag Archives: needle bearings

China Best Sales CHINAMFG CHINAMFG Quality Stud Track Cam Followers Needle Roller Bearings CF30-2b, Kr90, CF30-2buu, Kr90PP, Mcfr90sbx

Product Description

 

Product Description

Product Name Tracker roller bearing, Cam follower bearing
Precision Rating P6, P0, P5, P4, P2
Material Bearing Steel (GCr15)
Clearance  C1 C2 C3 
Vibration & Noisy Z1, Z2, Z3 V1, V2, V3
Features Inch Size, with Eccentric Collar, with Hexagon Hole
Application Machine Tools, Auto Parts, Power Generators,and other Industrial Applications
Certification ISO 9001: 2008
Packing 1. Neutral Packing Bearing 2. Industrial Packing 3. Commercial Packing Bearing 4. Customize

 

Product Parameters

 

IKO   IKO   Mcgill D d C B1 B2   G G1          
CF04B KR12 CF4BUU KR12PP MCFR12SBX 12 4 8 20 11 M4X0.7 6 0.08 210 220
CF05B KR13 CF5BUU KR13PP MCFR13SBX 13 5 9 23 13 M5X0.8 7.5 0.23 260 280
CF06B KR16 CF6BUU KR16PP MCFR16SBX 16 6 11 28 16 M6X1 8 0.3 370 400
CF08B KR19 CF8BUU KR19PP MCFR19SBX 19 8 11 32 20 M8X1.25 10 0.8 430 630
CF10B KR22 CF10BUU KR22PP MCFR22SBX 22 10 12 36 23 M10X1.25 12 1.2 550 670
CF10-1B KR26 CF10-1BUU KR26PP MCFR26SBX 26 10 12 36 23 M10X1.25 12 1.2 550 670
CF12B KR30 CF12BUU KR30PP MCFR30SBX 30 12 14 40 25 6 M12X1.5 13 6 3 2.2 810 900
CF12-1B KR32 CF12-1BUU KR32PP MCFR32SBX 32 12 14 40 25 6 M12X1.5 13 6 3 2.2 810 900
CF16B KR35 CF16BUU KR35PP MCFR35SBX 35 16 18 52 32.5 8 M16X1.5 17 6 3 5.8 1230 1560
CF18B KR40 CF18BUU KR40PP MCFR40SBX 40 18 20 58 36.5 8 M18X1.5 19 6 3 8.5 1500 2500
CF20-1B KR47 CF20-1BUU KR47PP MCFR47SBX 47 20 24 66 40.5 9 M20X1.5 21 8 4 12 2110 3140
CF20B KR52 CF20BUU KR52PP MCFR52SBX 52 20 29 66 40.5 9 M20X1.5 21 8 4 12 2110 3140
CF24B KR62 CF24BUU KR62PP MCFR62SBX 62 24 29 80 49.5 11 M24X1.5 25 8 4 22 3110 3840
CF24-1B KR72 CF24-1BUU KR72PP MCFR72SBX 72 24 29 80 49.5 11 M24X1.5 25 8 4 22 3110 3840
CF30B KR80 CF30BUU KR80PP MCFR80SBX 80 30 35 100 63 15 M30X1.5 32 8 4 46 4630 6300
CF30-1B KR85 CF30-1BUU KR85PP MCFR85SBX 85 30 35 100 63 15 M30X1.5 32 8 4 46 4630 6300
CF30-2B KR90 CF30-2BUU KR90PP MCFR90SBX 90 30 35 100 63 15 M30X1.5 32 8 4 46 4630 6300

 

 

 

Workshop

 

Packaging & Shipping

Bearings Package:

    1):Inner Plastic Bag+ Paper Box + Carton(+Pallet)

    2):Small sizes:Plastic Tube + Carton

    3):Big sizes:Wooden Case

 

Bearings Lead time:

   We will prepare your order as soon as possible

    1)2-3 days for ex-stock

    2)7-20 days for others

 

 Shipping & Delivery time:

   1) Less than 45 Kg:DHL TNT Fedex UPS express will be better,( 4-7 days delivered to your address)

   2) Between 45 to 200 Kg:Air transiportation will be better,( 5-14 days delivered to your airport)

   3) Over 200 Kg:Sea transportation will be better.( Cheapest,18-45 days to your port ).

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Rows Number: Single
Material: Gcr15
Precision: P0 P6 P5 P4 P2
Clearance: C0 C2 C3 C4 C5
Vibration: Z1V1 Z2V2 Z3V3
Lubricated: Oil or Grease
Customization:
Available

|

cam roller

Can you provide insights into the importance of proper installation and alignment of cam rollers?

Proper installation and alignment of cam rollers are crucial for achieving optimal performance, longevity, and reliability of the tracking system. The installation and alignment process directly impacts the functionality, efficiency, and lifespan of the cam rollers. Here are some key insights into the importance of proper installation and alignment:

  • Accurate Tracking: Proper installation ensures that the cam rollers are positioned correctly and aligned with the cam profile or track. Accurate alignment is essential for achieving precise and consistent tracking of objects or components. Even a slight misalignment can result in deviations from the desired path, causing positioning errors, reduced accuracy, and compromised system performance.
  • Smooth Motion: Correct installation and alignment play a significant role in enabling smooth and uninterrupted rolling motion of the cam rollers. Misalignment or improper installation can introduce friction, uneven loading, or binding, which can lead to jerky or erratic motion. On the other hand, proper alignment facilitates smooth and efficient rolling, minimizing energy losses, reducing wear, and ensuring seamless operation.
  • Load Distribution: Proper alignment helps distribute the load evenly among the cam rollers and the associated components. Uniform load distribution prevents excessive stress on individual rollers, bearings, or tracks, reducing the risk of premature wear, fatigue, or failure. By ensuring proper load distribution, proper installation and alignment contribute to the longevity and reliability of the cam roller system.
  • Reduced Wear and Damage: Correct installation and alignment minimize friction and wear between the cam rollers and the track. Improper alignment can cause rubbing, scraping, or uneven contact, leading to accelerated wear, surface damage, or deformation of the rollers or track. Proper alignment reduces these issues, extending the lifespan of the cam rollers and reducing the frequency of maintenance or replacements.
  • Optimized Performance: Properly installed and aligned cam rollers maximize the performance of the tracking system. When the cam rollers are aligned correctly, they can operate at their intended design parameters, ensuring efficient power transmission, accurate tracking, and smooth motion. This optimization leads to improved productivity, reduced downtime, and enhanced overall system performance.
  • Alignment Sensitivity: Cam roller systems are often sensitive to misalignment due to their precise nature. Small deviations in alignment can have a significant impact on the performance and functionality of the system. Therefore, it is crucial to follow manufacturer guidelines and recommended alignment procedures during installation to ensure proper alignment and avoid potential issues.
  • Ease of Maintenance: Proper installation and alignment facilitate easier maintenance and servicing of the cam rollers. When the cam rollers are correctly aligned, it becomes simpler to access and replace individual components, such as bearings or rollers, during routine maintenance or repairs. This reduces downtime, simplifies maintenance procedures, and ensures efficient upkeep of the tracking system.

In summary, proper installation and alignment of cam rollers are essential for achieving accurate tracking, smooth motion, load distribution, reduced wear, optimized performance, and ease of maintenance. By following proper installation procedures and ensuring precise alignment, the longevity, efficiency, and reliability of the cam roller system can be maximized, leading to improved overall system performance and longevity.

cam roller

What advantages do cam rollers offer compared to other tracking components?

Cam rollers offer several advantages compared to other tracking components, making them a preferred choice in many applications. Their unique design and features provide distinct benefits that contribute to improved performance, reliability, and efficiency. Here’s a detailed explanation of the advantages that cam rollers offer compared to other tracking components:

  • Precision Tracking: Cam rollers are specifically designed to follow the profile of a cam or track with high precision. The cam profile following capability ensures accurate tracking along the desired path, allowing for precise positioning and controlled motion. Other tracking components may not provide the same level of precision, leading to deviations or inaccuracies in the motion system.
  • Rolling Motion: Cam rollers utilize rolling motion, where the rolling elements rotate instead of sliding or rubbing against the track. This rolling action reduces friction, resulting in smoother operation, improved energy efficiency, and reduced wear on both the cam roller and the track. In contrast, components that rely on sliding or rubbing contact may experience higher friction, leading to increased wear and decreased efficiency.
  • Load Distribution: Cam rollers distribute the applied load evenly among the rolling elements. This load distribution capability minimizes stress concentrations and ensures that no single point bears an excessive load. As a result, cam rollers can handle higher loads while maintaining stability and longevity. Other tracking components may experience localized stress concentrations, leading to premature wear or failure under heavy loads.
  • High Rigidity: Cam rollers are designed to provide high rigidity, allowing for accurate positioning and controlled motion. The materials and construction of cam rollers ensure minimal flexing or deformation during operation, maintaining tight tolerances and preventing unwanted deviations. In comparison, some other tracking components may exhibit lower rigidity, leading to less precise motion and increased susceptibility to external forces.
  • Wide Range of Configurations: Cam rollers are available in various configurations, such as stud-type cam rollers and yoke-type cam rollers, to accommodate different attachment and mounting requirements. This versatility makes them suitable for a wide range of applications and machinery configurations. In contrast, some other tracking components may have limited options or may not offer the same level of adaptability to diverse mounting or attachment needs.
  • Cost-Effectiveness: Cam rollers are generally cost-effective solutions for motion tracking. They offer a good balance between performance and cost, making them a preferred choice in many applications. Their durability, reliability, and long service life contribute to overall cost savings by minimizing maintenance, replacement, and downtime expenses. Other tracking components with similar performance characteristics may be more expensive or may not provide the same level of reliability.

By offering precision tracking, rolling motion, load distribution, high rigidity, versatile configurations, and cost-effectiveness, cam rollers stand out as advantageous tracking components in comparison to other alternatives. These advantages make cam rollers suitable for a wide range of applications, including machinery, conveyors, material handling systems, and automation equipment.

In summary, cam rollers offer distinct advantages compared to other tracking components. Their precision tracking, rolling motion, load distribution, high rigidity, versatile configurations, and cost-effectiveness contribute to improved performance, reliability, and efficiency in motion systems.

cam roller

In what industries or scenarios are cam rollers commonly employed?

Cam rollers, also known as cam followers or track rollers, find extensive usage in various industries and scenarios due to their versatile capabilities. These specialized roller bearings are employed in applications that require motion transmission, guidance, support, load handling, and compensation for misalignment. Here’s a detailed explanation of the industries and scenarios where cam rollers are commonly employed:

  • Automotive Industry: Cam rollers play a vital role in the automotive industry. They are used in engines to control valve timing, ensuring precise opening and closing of valves. Cam rollers are also utilized in suspension systems, where they guide the movement of suspension arms and provide support.
  • Material Handling and Conveyor Systems: Cam rollers are extensively employed in material handling and conveyor systems. They guide the movement of belts, chains, or rollers, ensuring smooth and controlled transportation of goods. Cam rollers provide support and help maintain proper alignment, contributing to efficient material handling operations.
  • Printing and Packaging Machinery: In printing and packaging machinery, cam rollers are commonly utilized. They are used to control tension and guide the movement of printing substrates or packaging materials. Cam rollers ensure consistent and accurate positioning of materials, enabling high-quality printing and precise packaging.
  • Textile Industry: Cam rollers have significant applications in the textile industry. They are employed in textile machinery to control the feeding and positioning of fabrics. Cam rollers contribute to the precise movement and tension control of fabrics during various textile processes.
  • Construction and Heavy Machinery: Cam rollers are extensively used in construction machinery and heavy equipment. They provide support and handle heavy loads in applications such as excavators, cranes, and loaders. Cam rollers ensure smooth operation and reliable load-bearing capabilities in demanding construction environments.
  • Industrial Automation: Cam rollers find wide usage in industrial automation systems. They are employed in robotics, assembly lines, and automated machinery to transmit motion, guide components, and handle loads. Cam rollers contribute to the precise movement and positioning of components in automated processes.
  • Aerospace and Defense: Cam rollers have applications in the aerospace and defense industries. They are utilized in aircraft landing gear systems, missile guidance mechanisms, and other critical mechanical systems. Cam rollers provide reliable motion transmission, support, and load handling capabilities in aerospace and defense applications.

These are just a few examples of the industries and scenarios where cam rollers are commonly employed. Their versatility and reliability make them suitable for a wide range of applications that require precise motion control, load handling, and guidance. The specific design, size, and material of cam rollers are selected based on the requirements of each industry or scenario.

In summary, cam rollers find extensive usage in industries such as automotive, material handling, printing and packaging, textile, construction, industrial automation, aerospace, and defense. They are employed in scenarios that require motion transmission, guidance, support, load handling, and compensation for misalignment. Cam rollers contribute to the efficient and reliable operation of mechanical systems across diverse industries and applications.

China Best Sales CHINAMFG CHINAMFG Quality Stud Track Cam Followers Needle Roller Bearings CF30-2b, Kr90, CF30-2buu, Kr90PP, Mcfr90sbx  China Best Sales CHINAMFG CHINAMFG Quality Stud Track Cam Followers Needle Roller Bearings CF30-2b, Kr90, CF30-2buu, Kr90PP, Mcfr90sbx
editor by CX 2024-04-12

China Custom CHINAMFG CHINAMFG Quality Stud Track Cam Followers Needle Roller Bearings CF20-1b, Kr47, CF20-1buu, Kr47PP, Mcfr47sbx

Product Description

 

Product Description

Product Name Tracker roller bearing, Cam follower bearing
Precision Rating P6, P0, P5, P4, P2
Material Bearing Steel (GCr15)
Clearance  C1 C2 C3 
Vibration & Noisy Z1, Z2, Z3 V1, V2, V3
Features Inch Size, with Eccentric Collar, with Hexagon Hole
Application Machine Tools, Auto Parts, Power Generators,and other Industrial Applications
Certification ISO 9001: 2008
Packing 1. Neutral Packing Bearing 2. Industrial Packing 3. Commercial Packing Bearing 4. Customize

 

Product Parameters

 

IKO   IKO   Mcgill D d C B1 B2   G G1          
CF04B KR12 CF4BUU KR12PP MCFR12SBX 12 4 8 20 11 M4X0.7 6 0.08 210 220
CF05B KR13 CF5BUU KR13PP MCFR13SBX 13 5 9 23 13 M5X0.8 7.5 0.23 260 280
CF06B KR16 CF6BUU KR16PP MCFR16SBX 16 6 11 28 16 M6X1 8 0.3 370 400
CF08B KR19 CF8BUU KR19PP MCFR19SBX 19 8 11 32 20 M8X1.25 10 0.8 430 630
CF10B KR22 CF10BUU KR22PP MCFR22SBX 22 10 12 36 23 M10X1.25 12 1.2 550 670
CF10-1B KR26 CF10-1BUU KR26PP MCFR26SBX 26 10 12 36 23 M10X1.25 12 1.2 550 670
CF12B KR30 CF12BUU KR30PP MCFR30SBX 30 12 14 40 25 6 M12X1.5 13 6 3 2.2 810 900
CF12-1B KR32 CF12-1BUU KR32PP MCFR32SBX 32 12 14 40 25 6 M12X1.5 13 6 3 2.2 810 900
CF16B KR35 CF16BUU KR35PP MCFR35SBX 35 16 18 52 32.5 8 M16X1.5 17 6 3 5.8 1230 1560
CF18B KR40 CF18BUU KR40PP MCFR40SBX 40 18 20 58 36.5 8 M18X1.5 19 6 3 8.5 1500 2500
CF20-1B KR47 CF20-1BUU KR47PP MCFR47SBX 47 20 24 66 40.5 9 M20X1.5 21 8 4 12 2110 3140
CF20B KR52 CF20BUU KR52PP MCFR52SBX 52 20 29 66 40.5 9 M20X1.5 21 8 4 12 2110 3140
CF24B KR62 CF24BUU KR62PP MCFR62SBX 62 24 29 80 49.5 11 M24X1.5 25 8 4 22 3110 3840
CF24-1B KR72 CF24-1BUU KR72PP MCFR72SBX 72 24 29 80 49.5 11 M24X1.5 25 8 4 22 3110 3840
CF30B KR80 CF30BUU KR80PP MCFR80SBX 80 30 35 100 63 15 M30X1.5 32 8 4 46 4630 6300
CF30-1B KR85 CF30-1BUU KR85PP MCFR85SBX 85 30 35 100 63 15 M30X1.5 32 8 4 46 4630 6300
CF30-2B KR90 CF30-2BUU KR90PP MCFR90SBX 90 30 35 100 63 15 M30X1.5 32 8 4 46 4630 6300

 

 

 

Workshop

 

Packaging & Shipping

Bearings Package:

    1):Inner Plastic Bag+ Paper Box + Carton(+Pallet)

    2):Small sizes:Plastic Tube + Carton

    3):Big sizes:Wooden Case

 

Bearings Lead time:

   We will prepare your order as soon as possible

    1)2-3 days for ex-stock

    2)7-20 days for others

 

 Shipping & Delivery time:

   1) Less than 45 Kg:DHL TNT Fedex UPS express will be better,( 4-7 days delivered to your address)

   2) Between 45 to 200 Kg:Air transiportation will be better,( 5-14 days delivered to your airport)

   3) Over 200 Kg:Sea transportation will be better.( Cheapest,18-45 days to your port ).

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Rows Number: Single
Material: Gcr15
Precision: P0 P6 P5 P4 P2
Clearance: C0 C2 C3 C4 C5
Vibration: Z1V1 Z2V2 Z3V3
Lubricated: Oil or Grease
Customization:
Available

|

cam roller

What are the signs that indicate a need for cam roller replacement or maintenance, and how can they be diagnosed?

Proper maintenance and timely replacement of cam rollers are essential for ensuring their optimal performance and longevity. Several signs indicate the need for cam roller replacement or maintenance, and diagnosing these signs can help identify potential issues. Here are some common signs and diagnostic methods:

  • Abnormal Noise: Unusual or excessive noise during the operation of cam rollers can indicate problems. Grinding, squeaking, or rattling sounds may suggest issues such as worn bearings, misalignment, or insufficient lubrication. Conduct a thorough inspection and listen for any abnormal noise while the cam rollers are in motion.
  • Irregular Motion: If the cam rollers exhibit irregular or jerky motion instead of smooth and consistent rolling, it may indicate problems. This can be caused by misalignment, damaged cam profiles, worn bearings, or debris accumulation. Observe the motion of the cam rollers carefully to detect any irregularities or inconsistencies.
  • Inconsistent Tracking: Cam rollers should provide accurate and consistent tracking of objects or components along the designated path. If there are deviations or errors in the tracking, it may indicate misalignment, worn cam profiles, damaged rollers, or track irregularities. Monitor the tracking performance of the cam rollers and check for any inconsistencies or deviations from the desired path.
  • Excessive Wear: Visual inspection of the cam rollers can reveal signs of excessive wear. Check for signs such as worn or flattened surfaces, pitting, cracks, or deformation. Excessive wear can occur due to high loads, misalignment, inadequate lubrication, or prolonged usage. Regularly inspect the cam rollers for any visible signs of wear or damage.
  • Uneven Load Distribution: Improper load distribution across the cam rollers can lead to premature wear or failure. Inspect the cam rollers and associated components for any signs of uneven loading, such as uneven wear patterns, excessive wear on specific rollers, or track distortions. Uneven load distribution may result from misalignment, damaged components, or improper installation.
  • Increased Friction: Excessive friction during the rolling motion of cam rollers can impair their performance and lead to accelerated wear. Monitor the rolling motion and check for signs of increased friction, such as resistance, overheating, or uneven movement. Excessive friction can be caused by misalignment, inadequate lubrication, debris accumulation, or worn components.
  • Loss of Efficiency: A decrease in the efficiency of the cam roller system can indicate underlying issues. If the system requires more power, shows reduced speed, or exhibits decreased accuracy compared to its normal operation, it may indicate problems with the cam rollers. Monitor the system’s performance and compare it with the expected efficiency to identify any loss in performance.

When diagnosing these signs, it is important to follow manufacturer guidelines and recommended maintenance procedures. Diagnostic methods may include visual inspection, listening for abnormal sounds, measuring performance parameters, checking alignment, conducting lubrication analysis, or consulting with qualified technicians or maintenance professionals.

Regular maintenance and inspection schedules should be established to monitor the condition of cam rollers. By identifying signs of wear, misalignment, or other issues early on, timely maintenance or replacement can be performed to prevent further damage, maintain optimal performance, and extend the lifespan of the cam roller system.

cam roller

How do cam rollers contribute to precise and controlled motion in machinery?

Cam rollers play a significant role in ensuring precise and controlled motion in various machinery applications. Their design and functionality contribute to accurate tracking, smooth operation, and controlled movement. Here’s a detailed explanation of how cam rollers contribute to precise and controlled motion in machinery:

  • Cam Profile Following: Cam rollers are specifically designed to follow the profile of a cam or track. The outer ring of the cam roller is shaped to match the contour of the cam surface. As the cam rotates or moves, the cam roller maintains contact with the cam profile, ensuring precise tracking and controlled motion along the desired path. This cam profile following capability enables machinery to achieve accurate and repeatable motion.
  • Rolling Motion: Cam rollers utilize rolling motion to traverse the cam profile. The rolling motion reduces friction compared to sliding or rubbing contact, resulting in smoother operation and improved energy efficiency. The rolling action of cam rollers allows for controlled movement with minimal resistance, ensuring precise motion and minimizing wear and tear.
  • Load Distribution: Cam rollers are designed to distribute the applied load evenly among the rolling elements. This load distribution capability minimizes stress concentrations and prevents excessive wear on individual rollers. By distributing the load effectively, cam rollers contribute to maintaining precise and controlled motion without compromising performance or causing premature failure.
  • High Rigidity: Cam rollers are constructed to provide high rigidity, which is vital for precise and controlled motion. The materials and design of cam rollers ensure minimal deformation or flexing during operation, allowing for accurate positioning and controlled movement. The high rigidity of cam rollers enables machinery to maintain tight tolerances and achieve the desired motion without unwanted deviations.
  • Roller Retainers: Some cam roller designs incorporate roller retainers or cages that hold the rolling elements in place and maintain proper spacing. These retainers prevent roller skewing and ensure controlled movement by guiding the rollers along the cam profile. The use of roller retainers enhances precision and eliminates the risk of roller misalignment, contributing to precise and controlled motion in machinery.
  • Precision Bearings: Cam rollers are equipped with precision bearings that provide smooth rolling motion and reduce internal friction. These bearings are designed to handle both radial and axial loads, ensuring stable and controlled motion in various directions. The precision bearings in cam rollers contribute to the overall precision and controlled movement of the machinery.

By incorporating these design features and functionalities, cam rollers contribute to precise and controlled motion in machinery. They enable accurate tracking of cam profiles, utilize rolling motion with reduced friction, distribute loads evenly, provide high rigidity, use roller retainers for proper alignment, and utilize precision bearings for smooth operation. All these factors work together to ensure precise positioning, controlled movement, and reliable performance in a wide range of machinery applications.

In summary, cam rollers contribute to precise and controlled motion in machinery through their cam profile following capability, rolling motion, load distribution, high rigidity, roller retainers, and precision bearings. These features enable machinery to achieve accurate positioning, smooth operation, and controlled movement, resulting in improved performance and productivity.

cam roller

How does the design of a cam roller contribute to efficient motion and tracking?

The design of a cam roller plays a crucial role in ensuring efficient motion transmission and tracking along the surface profile of a cam or track. Various design features are incorporated to optimize performance, reliability, and smooth operation. Here’s a detailed explanation of how the design of a cam roller contributes to efficient motion and tracking:

  • Bearing Element: The choice of the bearing element, such as cylindrical rollers, needle rollers, or ball bearings, is a critical design consideration. The bearing element should be selected based on the specific application requirements, including load capacity, speed, and precision. The bearing element allows for smooth rolling motion and efficient load distribution, minimizing friction and wear.
  • Outer Ring Profile: The outer ring of a cam roller has a profile that matches the shape of the cam or track. This design feature ensures accurate tracking and follows the contour of the cam or track surface. The outer ring provides guidance and support to the roller, allowing it to smoothly traverse the cam profile without slipping or deviating from the desired path.
  • Stud or Yoke: The stud or yoke is the component that attaches the cam roller to the moving part of the mechanical system. It is designed to provide secure attachment and proper alignment. The stud or yoke may have additional features such as threaded ends, lubrication provisions, or seals to enhance functionality and ease of maintenance.
  • Roller Retainers: In some cam roller designs, roller retainers are used to maintain proper spacing and alignment of the rollers within the outer ring. These retainers prevent roller skewing and ensure even load distribution among the rollers. By maintaining precise roller alignment, efficient motion transmission and tracking are achieved.
  • Sealing and Lubrication: Proper sealing and lubrication are essential for the efficient functioning of cam rollers. Seals prevent contaminants from entering the bearing and protect against lubricant leakage. Lubrication reduces friction and wear, ensuring smooth rolling motion. The design of cam rollers may include sealing elements and lubrication provisions to facilitate effective sealing and lubrication maintenance.

The careful consideration of these design factors contributes to efficient motion and tracking in cam rollers. When the cam roller is in operation, these design features enable it to smoothly follow the profile of the cam or track, ensuring accurate and reliable motion transmission. Efficient tracking minimizes energy losses, reduces wear, and enhances the overall performance of the mechanical system.

It is important to note that the design of a cam roller should be selected based on the specific requirements of the application. Factors such as load capacity, speed, operating conditions, and precision requirements should be taken into account to ensure optimal performance and longevity of the cam roller in the mechanical system.

In summary, the design of a cam roller, including the bearing element, outer ring profile, stud or yoke, roller retainers, sealing, and lubrication, contributes to efficient motion transmission and tracking. These design features enable smooth rolling motion, accurate tracking along the cam profile, and reliable performance in various mechanical systems.

China Custom CHINAMFG CHINAMFG Quality Stud Track Cam Followers Needle Roller Bearings CF20-1b, Kr47, CF20-1buu, Kr47PP, Mcfr47sbx  China Custom CHINAMFG CHINAMFG Quality Stud Track Cam Followers Needle Roller Bearings CF20-1b, Kr47, CF20-1buu, Kr47PP, Mcfr47sbx
editor by CX 2024-04-11

China Good quality CHINAMFG CHINAMFG Quality Stud Track Cam Followers Needle Roller Bearings CF06b, Kr16, CF6buu, Kr16PP, Mcfr16sbx

Product Description

 

Product Description

Product Name Tracker roller bearing, Cam follower bearing
Precision Rating P6, P0, P5, P4, P2
Material Bearing Steel (GCr15)
Clearance  C1 C2 C3 
Vibration & Noisy Z1, Z2, Z3 V1, V2, V3
Features Inch Size, with Eccentric Collar, with Hexagon Hole
Application Machine Tools, Auto Parts, Power Generators,and other Industrial Applications
Certification ISO 9001: 2008
Packing 1. Neutral Packing Bearing 2. Industrial Packing 3. Commercial Packing Bearing 4. Customize

 

Product Parameters

 

IKO   IKO   Mcgill D d C B1 B2   G G1          
CF04B KR12 CF4BUU KR12PP MCFR12SBX 12 4 8 20 11 M4X0.7 6 0.08 210 220
CF05B KR13 CF5BUU KR13PP MCFR13SBX 13 5 9 23 13 M5X0.8 7.5 0.23 260 280
CF06B KR16 CF6BUU KR16PP MCFR16SBX 16 6 11 28 16 M6X1 8 0.3 370 400
CF08B KR19 CF8BUU KR19PP MCFR19SBX 19 8 11 32 20 M8X1.25 10 0.8 430 630
CF10B KR22 CF10BUU KR22PP MCFR22SBX 22 10 12 36 23 M10X1.25 12 1.2 550 670
CF10-1B KR26 CF10-1BUU KR26PP MCFR26SBX 26 10 12 36 23 M10X1.25 12 1.2 550 670
CF12B KR30 CF12BUU KR30PP MCFR30SBX 30 12 14 40 25 6 M12X1.5 13 6 3 2.2 810 900
CF12-1B KR32 CF12-1BUU KR32PP MCFR32SBX 32 12 14 40 25 6 M12X1.5 13 6 3 2.2 810 900
CF16B KR35 CF16BUU KR35PP MCFR35SBX 35 16 18 52 32.5 8 M16X1.5 17 6 3 5.8 1230 1560
CF18B KR40 CF18BUU KR40PP MCFR40SBX 40 18 20 58 36.5 8 M18X1.5 19 6 3 8.5 1500 2500
CF20-1B KR47 CF20-1BUU KR47PP MCFR47SBX 47 20 24 66 40.5 9 M20X1.5 21 8 4 12 2110 3140
CF20B KR52 CF20BUU KR52PP MCFR52SBX 52 20 29 66 40.5 9 M20X1.5 21 8 4 12 2110 3140
CF24B KR62 CF24BUU KR62PP MCFR62SBX 62 24 29 80 49.5 11 M24X1.5 25 8 4 22 3110 3840
CF24-1B KR72 CF24-1BUU KR72PP MCFR72SBX 72 24 29 80 49.5 11 M24X1.5 25 8 4 22 3110 3840
CF30B KR80 CF30BUU KR80PP MCFR80SBX 80 30 35 100 63 15 M30X1.5 32 8 4 46 4630 6300
CF30-1B KR85 CF30-1BUU KR85PP MCFR85SBX 85 30 35 100 63 15 M30X1.5 32 8 4 46 4630 6300
CF30-2B KR90 CF30-2BUU KR90PP MCFR90SBX 90 30 35 100 63 15 M30X1.5 32 8 4 46 4630 6300

 

 

 

Workshop

 

Packaging & Shipping

Bearings Package:

    1):Inner Plastic Bag+ Paper Box + Carton(+Pallet)

    2):Small sizes:Plastic Tube + Carton

    3):Big sizes:Wooden Case

 

Bearings Lead time:

   We will prepare your order as soon as possible

    1)2-3 days for ex-stock

    2)7-20 days for others

 

 Shipping & Delivery time:

   1) Less than 45 Kg:DHL TNT Fedex UPS express will be better,( 4-7 days delivered to your address)

   2) Between 45 to 200 Kg:Air transiportation will be better,( 5-14 days delivered to your airport)

   3) Over 200 Kg:Sea transportation will be better.( Cheapest,18-45 days to your port ).

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Rows Number: Single
Material: Gcr15
Precision: P0 P6 P5 P4 P2
Clearance: C0 C2 C3 C4 C5
Vibration: Z1V1 Z2V2 Z3V3
Lubricated: Oil or Grease
Customization:
Available

|

cam roller

How do electronic or computer-controlled components integrate with cam rollers in modern applications?

In modern applications, electronic or computer-controlled components play a significant role in integrating with cam rollers to enhance functionality, precision, and automation. The integration of electronic or computer-controlled components with cam rollers enables advanced control, monitoring, and synchronization of the motion system. Here’s a detailed explanation of how electronic or computer-controlled components integrate with cam rollers in modern applications:

  • Sensor Integration: Electronic sensors can be integrated with cam rollers to provide real-time feedback on various parameters such as position, speed, acceleration, and load. Position sensors, such as encoders or linear displacement sensors, can be used to precisely determine the position of the cam rollers and the objects or components they are tracking. This information can then be used for closed-loop control, ensuring accurate tracking and motion control.
  • Control Systems: Electronic or computer-controlled systems can be employed to manage the operation of cam rollers. These control systems can receive input from sensors and use algorithms to calculate the desired motion profiles. They can then generate signals to drive motors or actuators that control the movement of the cam rollers. By integrating control systems, precise motion control, synchronization, and programmability can be achieved, enabling complex motion sequences and adaptive tracking capabilities.
  • Communication Protocols: Electronic or computer-controlled components can utilize various communication protocols to exchange data and commands with other system components. For example, in industrial automation applications, cam rollers may be integrated into a larger control network using protocols such as Modbus, CAN bus, or Ethernet. This integration enables seamless communication, coordination, and synchronization with other components or systems, enhancing overall system performance and functionality.
  • Human-Machine Interface (HMI): In applications where human interaction is involved, electronic or computer-controlled components can provide a user interface for monitoring and controlling the cam rollers. This interface can include touch screens, graphical displays, or control panels that allow operators to set parameters, monitor performance, and adjust settings as needed. The integration of HMIs with cam rollers simplifies operation, facilitates troubleshooting, and enhances user experience.
  • Data Logging and Analysis: Electronic or computer-controlled components can capture and log data related to the operation of cam rollers and the overall tracking system. This data can include parameters such as position, speed, acceleration, forces, and system status. By analyzing this data, performance trends, anomalies, and optimization opportunities can be identified. The integration of data logging and analysis capabilities enables proactive maintenance, performance optimization, and continuous improvement of the cam roller system.
  • Integration with Automation Systems: In automated systems, electronic or computer-controlled components can integrate cam rollers into the overall automation framework. This integration allows for seamless coordination with other automated processes, robotics, or material handling systems. By integrating cam rollers with automation systems, precise tracking, synchronized motion, and efficient production workflows can be achieved.

The integration of electronic or computer-controlled components with cam rollers brings advanced capabilities to modern applications. It enables precise control, adaptive tracking, real-time monitoring, data-driven optimization, and seamless integration with automation systems. This integration enhances the functionality, flexibility, and efficiency of cam roller systems, opening up possibilities for a wide range of applications in industries such as manufacturing, robotics, packaging, material handling, and more.

cam roller

How do cam rollers contribute to precise and controlled motion in machinery?

Cam rollers play a significant role in ensuring precise and controlled motion in various machinery applications. Their design and functionality contribute to accurate tracking, smooth operation, and controlled movement. Here’s a detailed explanation of how cam rollers contribute to precise and controlled motion in machinery:

  • Cam Profile Following: Cam rollers are specifically designed to follow the profile of a cam or track. The outer ring of the cam roller is shaped to match the contour of the cam surface. As the cam rotates or moves, the cam roller maintains contact with the cam profile, ensuring precise tracking and controlled motion along the desired path. This cam profile following capability enables machinery to achieve accurate and repeatable motion.
  • Rolling Motion: Cam rollers utilize rolling motion to traverse the cam profile. The rolling motion reduces friction compared to sliding or rubbing contact, resulting in smoother operation and improved energy efficiency. The rolling action of cam rollers allows for controlled movement with minimal resistance, ensuring precise motion and minimizing wear and tear.
  • Load Distribution: Cam rollers are designed to distribute the applied load evenly among the rolling elements. This load distribution capability minimizes stress concentrations and prevents excessive wear on individual rollers. By distributing the load effectively, cam rollers contribute to maintaining precise and controlled motion without compromising performance or causing premature failure.
  • High Rigidity: Cam rollers are constructed to provide high rigidity, which is vital for precise and controlled motion. The materials and design of cam rollers ensure minimal deformation or flexing during operation, allowing for accurate positioning and controlled movement. The high rigidity of cam rollers enables machinery to maintain tight tolerances and achieve the desired motion without unwanted deviations.
  • Roller Retainers: Some cam roller designs incorporate roller retainers or cages that hold the rolling elements in place and maintain proper spacing. These retainers prevent roller skewing and ensure controlled movement by guiding the rollers along the cam profile. The use of roller retainers enhances precision and eliminates the risk of roller misalignment, contributing to precise and controlled motion in machinery.
  • Precision Bearings: Cam rollers are equipped with precision bearings that provide smooth rolling motion and reduce internal friction. These bearings are designed to handle both radial and axial loads, ensuring stable and controlled motion in various directions. The precision bearings in cam rollers contribute to the overall precision and controlled movement of the machinery.

By incorporating these design features and functionalities, cam rollers contribute to precise and controlled motion in machinery. They enable accurate tracking of cam profiles, utilize rolling motion with reduced friction, distribute loads evenly, provide high rigidity, use roller retainers for proper alignment, and utilize precision bearings for smooth operation. All these factors work together to ensure precise positioning, controlled movement, and reliable performance in a wide range of machinery applications.

In summary, cam rollers contribute to precise and controlled motion in machinery through their cam profile following capability, rolling motion, load distribution, high rigidity, roller retainers, and precision bearings. These features enable machinery to achieve accurate positioning, smooth operation, and controlled movement, resulting in improved performance and productivity.

cam roller

What is a cam roller, and how is it utilized in mechanical systems?

A cam roller, also known as a cam follower or track roller, is a specialized type of roller bearing used in mechanical systems. It is designed to follow the surface profile of a cam or track and transmit motion or force between the cam and a moving component. Here’s a detailed explanation of what a cam roller is and how it is utilized in mechanical systems:

A cam roller consists of a cylindrical roller, needle roller, or ball bearing that is mounted in a stud or yoke. The stud or yoke provides a means of attachment to the moving component of the mechanical system. The roller or bearing element is housed within a thick-walled outer ring, which serves as a guide and support for the roller. The outer ring has a profile that matches the shape of the cam or track over which the cam roller operates.

The primary function of a cam roller is to convert rotary motion into linear motion or vice versa. As the cam or track rotates, the cam roller follows the profile, causing the roller to move along the track. This motion can be utilized in various ways depending on the specific application. Here are some common uses of cam rollers in mechanical systems:

  • Motion Transmission: Cam rollers are often used to transmit motion from a rotating cam to a reciprocating or oscillating component. For example, in engines, cam followers are used to transfer the motion of the camshaft to the valves, opening and closing them at the appropriate timing.
  • Guiding and Support: Cam rollers can also provide guidance and support to moving components in a mechanical system. They help maintain proper alignment and prevent lateral movement or deflection. This is particularly useful in applications such as conveyor systems, where cam rollers guide the movement of belts or chains.
  • Load Bearing: Cam rollers are designed to withstand high loads and provide support to heavy-duty applications. They are often used in machinery and equipment where there is a need for reliable load-bearing capabilities. Examples include construction machinery, material handling equipment, and industrial automation systems.
  • Compensating for Misalignment: In some applications, cam rollers are utilized to compensate for misalignment between components. The rolling motion of the cam follower allows it to adjust and accommodate slight deviations in the cam or track profile, ensuring smooth operation even in imperfect conditions.

The choice of cam roller design, size, and material depends on the specific requirements of the application. Factors such as load capacity, speed, operating conditions, and precision requirements are taken into consideration when selecting the appropriate cam roller. Regular maintenance, including lubrication and inspection of the cam roller, is important to ensure its proper functioning and longevity in the mechanical system.

In summary, a cam roller is a specialized type of roller bearing used in mechanical systems to transmit motion, provide guidance and support, bear loads, and compensate for misalignment. Its ability to follow the profile of a cam or track allows for efficient conversion of rotary motion to linear motion or vice versa. Cam rollers find application in a wide range of industries and play a crucial role in ensuring the smooth and reliable operation of mechanical systems.

China Good quality CHINAMFG CHINAMFG Quality Stud Track Cam Followers Needle Roller Bearings CF06b, Kr16, CF6buu, Kr16PP, Mcfr16sbx  China Good quality CHINAMFG CHINAMFG Quality Stud Track Cam Followers Needle Roller Bearings CF06b, Kr16, CF6buu, Kr16PP, Mcfr16sbx
editor by CX 2024-04-08

China supplier Curves Role Cam Stud Roller 18X40X20mm Kre40PPA Kre40 PP Needle Bearings with Eccentric Collar

Product Description

Curves role Cam Stud Roller 18x40x20mm KRE40PPA  KRE40 PP Needle Bearings with eccentric collar
 

Cylindrical Roller Bearings

 

Spherical Roller Bearings
 
Needle Roller Bearings
Tapered Roller Bearings

 

Crossed Slewing bearing Thrust Roller Bearings

 

Detailed Photos

 

Products Details

HOJE offers a wide range of needle roller bearings including needle roller & cage assemblies, drawn cups,s and CHINAMFG needle roller bearings. They can also be specified as cam followers and track roller bearings by applications. The major application markets include automotive, consumer products, and general industrial goods. Conveyor, Power Tool, Money Counter, and Home Appliance.

NEEDLE ROLLER AND CAGE ASSEMBLY
(K, K‥T2, K‥S, K‥ZW, KMJ, KMJ‥S, KJ‥S, KV‥S,PCJ….. Series)

A needle roller and cage assembly include needle rollers and a cage that guides and retains the rollers.
These assemblies use both the shaft and housing as raceway surfaces. Consequently, the cross-sectional thickness of the assembly is small, roughly equivalent to the diameter of the needle rollers. 
Because this bearing type has no inner or outer rings, the installation is much easier.
These assemblies are available in both single-row and double-row configurations.
As long as the tolerance limits of the shaft and housing are satisfied, the bearing radial internal clearance can be adjusted.

This bearing type is used for connecting rods in compact and mid-sized internal combustion engines (e.g. outboard engines and multipurpose engines), as well as reciprocating compressors.
 

DRAWN-CUP NEEDLE ROLLER BEARING
(HK, HK‥ZWD, HMK, HMK‥ZWD, BK, BK‥ZWD…… Series)

This bearing type includes an outer ring and needle rollers, which are both drawn from special thin steel plates by precision deep drawing, and a cage that guides the needle rollers precisely.
— This bearing product comprises an outer ring formed through a precision deep-drawing process from a thin special steel blank; needle rollers; and a cage that guides the rollers.
— A hardened and ground shaft or inner ring (IR Series) is used as the raceway.
— This bearing needs no axial clamping due to easy installation and a press-fit in the housing. 
— Both a closed-end type to close around the end of the shaft and an open-end type are available.
— Furthermore, a type with a seal installed on a single side or on both sides is also available.
— The standard type includes a needle roller and cage assembly. In addition to this type, a special type with full complement rollers is available as an option.

 

MACHINED-RING NEEDLE ROLLER BEARINGS
(RNA48, RNA49, RNA59, RNA69, NK, NKS,NA48, NA49, NA59, NA69, NK+IR, NKS+IR ……Series)

This product mainly includes machined components – an outer ring and inner ring, needle rollers, and a cage that guides the rollers. In this bearing, the cage or needle rollers are guided by the rib or side plate of the outer ring. Consequently, the roller and cage assembly cannot be separated from the outer ring.
— Available in both metric dimensions and inch dimensions.
— This product is best-suited to a space-saving design due to its low section height, and large load capacity. 
— Another advantage is high rigidity and high bearing accuracy due to the machined outer ring 
— This bearing can be used with a housing made of light metal, because of its highly rigid outer ring. (Other than NKS small-size products)
— The outer ring has a lubrication hole and lubrication groove. 
— Both single-row and double-row types are available. 
— A type with a seal installed on a single side or on both sides is also available.

THRUST NEEDLE ROLLER BEARINGS
(AXK11, AS11, WS811, GS811,811, 812, 893, 874, K811, K812, K893…… Series)

The product is comprised of a needle or cylindrical rollers, a cage that guides and retains the rollers, and a disk-shaped bearing ring, and is capable of holding an axial load in 1 direction. The mounting surface can be used as a raceway surface when the mounting surface is beat-treated and finished. As a result, the bearing can be supplied without bearing ring raceways.
— Space Saving Design: Best-suited to save space because of its small section height and large load capacity.
— Bearing Types: Currently available bearing ring types are AS, WS, GS, and ZS. The AS type consists of a thin steel disk having undergone surface hardening, while the WS, GS, and ZS types are machined.
— Bi-Direction Axial Loading: This bearing can support large axial loads from both sides.
— Application: This complex bearing is designed to support a machine tool precision ball screw.

CYLINDRICAL NEEDLE ROLLER ROLLER FOLLOWERS
(NA22, RNAB2, NAB2, NATR, NUTR2, NUTW, NATV, NACV…… Series)

The track roller bearing is a needle roller bearing with a thick outer ring, which is applied to the cam roller, guide roller, eccentric roller, or rocker’s arm. The track roller bearings are mainly categorized into a stud-type track roller bearing (cam follower) and a yoke-type track roller bearing (roller follower). Various types of roller followers and cam followers are available.
— The bearing type with a cage is suitable for comparatively high-speed running because its rollers are guided by the cage. 
— Having more rollers relative to a given size, a full complement roller type boasts greater load capacity.
— The outer surface is available in both spherical (crowning) profile and cylindrical profile. 
— This cam follower (bearing) is selectively available in both metric and inch sizes. 
— The stud is either a recessed head type allowing the use of a screwdriver or a hexagon socket head type so as to be mounted and adjusted easily

 

Packaging & Shipping

 

Packaging
 1)Commercial Bearings packaging: 1pc/plastic bag + color box + carton + pallet
 2)Industrial Bearings packaging 
 3)According to the requirement of customers
 Payment
 1) T/T:30% deposit, 70% should be paid before shipment.
 2) L/C at sight. (high bank charge, not suggested, but acceptable )
 3) 100% Western Union in advance. (especially for air shipment or small amounts)
 Delivery
 1) Less than 45 KGS, we will send by express. ( Door to Door, Convenient )
 2) Between 45 – 200 KGS, we will send by air transport. ( Fastest and safest, but expensive )
 3) More than 200 KGS, we will send by sea. ( Cheapest, but long time )

 

 

Company Profile

HangZhou HOJE Bearing Co., LTD Specializing in the manufacture and sales of bearings and bearing accessories, we mainly produce deep groove ball bearings, pillow block bearings, Cylindrical and Spherical Roller Bearings, tapered roller bearings, and related components. Our factory has the most advanced equipment, first-class mechanical professional and technical personnel, and one-stop automatic production from bearing raw materials to finished products. We are willing to provide excellent services for factories that produce industrial equipment, vehicles, electromechanical tools, home appliances, instrumentation, fitness equipment, leisure sports equipment, users of various types of mechanical equipment and civil machinery, and domestic and foreign traders and distributors.

Company Advantages

1. FREE SAMPLES: contact us by email or trade manager, and we will send the free samples according to your request.
2. World-Class Bearing: We provide our customers with all types of bearings of world-class quality.
3. OEM or Non-Stand Bearings: Any requirement for Non-standard bearings is Easily Fulfilled by us due to our vast knowledge and links in the industry.
4. Genuine products With Excellent Quality: Company has always proved the 100% quality products it provides with genuine intent.
5. After-Sales Service and Technical Assistance: Company provides after-sales service and technical assistance as per the customer’s requirements and needs.
6. Quick Delivery: The company provides just-in-time delivery with its streamlined supply chain.
7. Cost Saving: We provide long-life, shock-resistant, and high-reliability bearings with excellent quality and better performance. Resulting in increased cost savings.
8. Attending customer queries promptly: We believe that if customers are satisfied then it proves our worth well. Customers are always given quick support.

 

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Cage: With Cage
Rows Number: Single
Load Direction: Radial Bearing
Style: With Outer Ring, Without Inner Ring
Material: Bearing Steel
Type: Closed
Samples:
US$ 0/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

cam roller

How does the choice of cam rollers affect the overall performance and reliability of tracking systems?

The choice of cam rollers plays a crucial role in determining the overall performance and reliability of tracking systems. Different factors associated with cam rollers can significantly impact the system’s functionality, efficiency, and longevity. Here’s a detailed explanation of how the choice of cam rollers affects the overall performance and reliability of tracking systems:

  • Load Capacity: The load capacity of cam rollers is a critical consideration. Choosing cam rollers with an appropriate load capacity ensures that the tracking system can handle the required weight and forces without compromising performance or risking component failure. Selecting cam rollers with inadequate load capacity may lead to premature wear, excessive friction, or system instability, affecting the overall reliability and performance.
  • Roller Material and Durability: Cam rollers are available in various materials, such as steel, stainless steel, or plastic. The choice of material impacts the durability, resistance to wear, and overall lifespan of cam rollers. In harsh or corrosive environments, selecting corrosion-resistant materials can enhance the reliability and longevity of the tracking system. Evaluating the operating conditions and selecting cam rollers with appropriate material properties is essential for ensuring long-term performance.
  • Lubrication Requirements: Proper lubrication is crucial for the smooth operation and longevity of cam rollers. Different types of cam rollers have varying lubrication requirements, ranging from self-lubricating options to those that require regular maintenance. Consider the lubrication demands of cam rollers and ensure that they align with the operational needs and maintenance capabilities of the tracking system. Adequate lubrication reduces friction, minimizes wear, and enhances the overall reliability of the system.
  • Accuracy and Precision: The choice of cam rollers can affect the accuracy and precision of the tracking system. Cam rollers with high-quality manufacturing and precision engineering contribute to smoother and more consistent motion. They provide better control over acceleration, deceleration, and dwell periods, resulting in improved tracking accuracy. Selecting cam rollers with the appropriate design and manufacturing tolerances ensures the desired level of precision in tracking applications.
  • Environmental Compatibility: Different tracking systems operate in various environmental conditions, including temperature extremes, dust, moisture, or contaminants. The choice of cam rollers should consider the compatibility with the specific environment in which the tracking system will be utilized. Opting for cam rollers designed to withstand environmental factors enhances the reliability and performance of the system, preventing premature wear or damage due to environmental stressors.
  • Track Configuration: Cam rollers are available in various configurations to accommodate different track types, such as linear tracks, curved tracks, or complex multi-axis tracks. Choosing cam rollers that align with the track configuration required by the application ensures optimal performance and reliability. The compatibility between the cam rollers and the track configuration affects the system’s ability to handle the desired motion patterns, trajectories, and load distribution effectively.
  • Compatibility with Object Characteristics: Cam rollers should be selected based on the characteristics of the objects or components being tracked. Consider factors such as shape, size, weight, and surface properties of the objects. Choosing cam rollers that are compatible with the specific object characteristics ensures proper alignment, secure tracking, and reliable performance. Incorrect sizing or mismatched specifications may lead to tracking errors, poor contact, or even damage to the objects being tracked.
  • Manufacturing Quality and Standards: The overall performance and reliability of cam rollers depend on the manufacturing quality and adherence to industry standards. Choosing cam rollers from reputable manufacturers known for their quality control processes and compliance with relevant standards ensures reliable and consistent performance. High-quality cam rollers are less prone to premature wear, misalignment, or unexpected failures, resulting in improved reliability and overall system performance.

Considering these factors and making an informed choice regarding cam rollers is essential for optimizing the performance, efficiency, and reliability of tracking systems. Thoroughly evaluating the application requirements, environmental conditions, and operational needs will help select cam rollers that are best suited for the specific tracking system, leading to enhanced performance and increased reliability.

cam roller

Can you explain the impact of cam rollers on the overall efficiency of tracking systems?

Cam rollers play a crucial role in the overall efficiency of tracking systems. These systems rely on the precise and controlled movement of components or objects along a predetermined path, and cam rollers contribute to achieving accurate tracking, smooth motion, and reliable operation. Here’s a detailed explanation of the impact of cam rollers on the overall efficiency of tracking systems:

  • Precision Tracking: Cam rollers are designed to follow a specific cam profile or track, which allows for precise tracking of objects or components. The shape and contour of the cam determine the desired motion, and the cam rollers ensure that the objects or components move along the track with high accuracy and repeatability. This precise tracking capability enhances the overall efficiency of tracking systems by ensuring that the intended path is followed consistently.
  • Smooth Motion: Cam rollers are engineered to provide smooth rolling motion along the cam profile or track. The rolling elements of the cam rollers, such as bearings or rollers, minimize friction and enable the objects or components to glide smoothly along the track. This smooth motion reduces energy consumption, minimizes wear and tear, and enhances the overall efficiency of the tracking system by facilitating seamless movement without jerks or disruptions.
  • Reduced Wear: By distributing the load evenly and providing a rolling contact, cam rollers help reduce wear on both the rollers themselves and the track they follow. The rolling action minimizes frictional forces and wear compared to sliding or dragging mechanisms. This reduced wear extends the lifespan of the cam rollers and the tracking system components, ensuring long-term efficiency and reliability.
  • High-Speed Capability: Cam rollers are designed to operate at high speeds without compromising performance. The choice of materials, lubrication, and design factors such as stability and balance enable cam rollers to handle rapid motion and high-speed tracking requirements. Their ability to maintain accurate tracking and smooth motion even at high speeds enhances the overall efficiency of tracking systems in applications where speed is crucial.
  • Load Capacity: Cam rollers are engineered to handle varying load capacities based on their design and construction. They can support significant loads while maintaining precise tracking and smooth motion. This load-carrying capability ensures that tracking systems can accommodate different objects or components of varying weights, contributing to the overall efficiency of the system by enabling versatile and reliable operation.
  • Reliability and Durability: Cam rollers are typically designed for robustness and durability. They are built to withstand the demands of continuous operation, heavy loads, and challenging environmental conditions. The use of high-quality materials, proper lubrication, and appropriate maintenance practices ensure the reliability and longevity of cam rollers, minimizing downtime and maximizing the overall efficiency of tracking systems.

In summary, cam rollers have a significant impact on the overall efficiency of tracking systems. Their precision tracking, smooth motion, reduced wear, high-speed capability, load capacity, reliability, and durability contribute to the efficient and reliable operation of tracking systems in various applications. By incorporating well-designed and properly maintained cam rollers, tracking systems can achieve optimal performance, accuracy, and productivity.

cam roller

How does the design of a cam roller contribute to efficient motion and tracking?

The design of a cam roller plays a crucial role in ensuring efficient motion transmission and tracking along the surface profile of a cam or track. Various design features are incorporated to optimize performance, reliability, and smooth operation. Here’s a detailed explanation of how the design of a cam roller contributes to efficient motion and tracking:

  • Bearing Element: The choice of the bearing element, such as cylindrical rollers, needle rollers, or ball bearings, is a critical design consideration. The bearing element should be selected based on the specific application requirements, including load capacity, speed, and precision. The bearing element allows for smooth rolling motion and efficient load distribution, minimizing friction and wear.
  • Outer Ring Profile: The outer ring of a cam roller has a profile that matches the shape of the cam or track. This design feature ensures accurate tracking and follows the contour of the cam or track surface. The outer ring provides guidance and support to the roller, allowing it to smoothly traverse the cam profile without slipping or deviating from the desired path.
  • Stud or Yoke: The stud or yoke is the component that attaches the cam roller to the moving part of the mechanical system. It is designed to provide secure attachment and proper alignment. The stud or yoke may have additional features such as threaded ends, lubrication provisions, or seals to enhance functionality and ease of maintenance.
  • Roller Retainers: In some cam roller designs, roller retainers are used to maintain proper spacing and alignment of the rollers within the outer ring. These retainers prevent roller skewing and ensure even load distribution among the rollers. By maintaining precise roller alignment, efficient motion transmission and tracking are achieved.
  • Sealing and Lubrication: Proper sealing and lubrication are essential for the efficient functioning of cam rollers. Seals prevent contaminants from entering the bearing and protect against lubricant leakage. Lubrication reduces friction and wear, ensuring smooth rolling motion. The design of cam rollers may include sealing elements and lubrication provisions to facilitate effective sealing and lubrication maintenance.

The careful consideration of these design factors contributes to efficient motion and tracking in cam rollers. When the cam roller is in operation, these design features enable it to smoothly follow the profile of the cam or track, ensuring accurate and reliable motion transmission. Efficient tracking minimizes energy losses, reduces wear, and enhances the overall performance of the mechanical system.

It is important to note that the design of a cam roller should be selected based on the specific requirements of the application. Factors such as load capacity, speed, operating conditions, and precision requirements should be taken into account to ensure optimal performance and longevity of the cam roller in the mechanical system.

In summary, the design of a cam roller, including the bearing element, outer ring profile, stud or yoke, roller retainers, sealing, and lubrication, contributes to efficient motion transmission and tracking. These design features enable smooth rolling motion, accurate tracking along the cam profile, and reliable performance in various mechanical systems.

China supplier Curves Role Cam Stud Roller 18X40X20mm Kre40PPA Kre40 PP Needle Bearings with Eccentric Collar  China supplier Curves Role Cam Stud Roller 18X40X20mm Kre40PPA Kre40 PP Needle Bearings with Eccentric Collar
editor by CX 2024-04-03

China Custom 1688 China Factory Good Quality Wholesale Needle Roller Bearings

Product Description

KRVE 30 Track Roller Cam Follower KRVE series Needle Bearing

Description of KRVE 30 Track Roller Cam Follower KRVE series Needle Bearing

Series Description
NATR Yoke type track rollers with axial guidance by washers,gap seal,with inner ring
NATR…PP Yoke type track rollers with additional sealing rings
NATV Yoke type track rollers with axial guidance by washers,full complement,gap seal,with inner ring
NATV…PP Yoke type track rollers with additional sealing rings
NUTR Yoke type track rollers with axial guidance by the rolling element,full complement,gap seal,with inner ring
KR Stud type track rollers with axial guidance by rid and washer,gap seal
KR…PP Stud type track rollers with sealing rings
KRE Stud type track rollers with eccentric collar
KRE…PP Stud type track rollers with eccentric collar and sealing rings
KRV Stud type track rollers with axial guidance by rid and washer,full complement, gap seal
KRV…PP Stud type track rollers with sealing rings
KRVE Stud type track rollers with eccentric collar
KRVE…PP Stud type track rollers with eccentric collar and sealing rings
NUKR Stud type track rollers with axial guidance by the rolling element,full complement, gap seals
NUKRE Stud type track rollers with eccentric collar
CF Stud type track rollers with cage ,the same as KR series

 

Catalogue of KRVE 30 Track Roller Cam Follower KRVE series Needle Bearing

Outside 

Diameter

Bearing Designation and mass approx Borndary Dimensions

Without 

Eccentric 

Collar

 Mass

With 

Ecctric 

Coollar

 Mass D d C B B1 B2 G G1 M M1 C1 d2
mm   g   g mm
47 KR 47 386 KRE 47 405.5 47 20 24 66 40.5 9 M20×1.5 21 8 4 0.8 37
KR 47 PP 386 KRE 47 PP 405.5 47 20 24 66 40.5 9 M20×1.5 21 8 4 0.8 37
KRV 47 390 KRVE 47 409.5 47 20 24 66 40.5 9 M20×1.5 21 8 4 0.8 37
KRV 47 PP 390 KRVE 47 PP 409.5 47 20 24 66 40.5 9 M20×1.5 21 8 4 0.8 37
NUKR 47 380 NUKPE 47 399.5 47 20 24 66 40.5 9 M20×1.5 21 8 4 0.8 27
52 KR 52 461 KRE 40 480.5 52 20 24 66 40.5 9 M20×1.5 21 8 4 0.8 37
KR 52 PP 461 KRE 52 PP 480.5 52 20 24 66 40.5 9 M20×1.5 21 8 4 0.8 37
KRV 52 465 KRVE 52 484.5 52 20 24 66 40.5 9 M20×1.5 21 8 4 0.8 37
KRV 52 PP 465 KRVE 52 PP 484.5 52 20 24 66 40.5 9 M20×1.5 21 8 4 0.8 37
NUKR 52 450 NUKPE 52 469.5 52 20 24 66 49.5 9 M20×1.5 21 8 4 0.8 31
62 KR 62 790 KRE 62 818.2 62 24 29 80 49.5 11 M24×1.5 25 8 4 0.8 44
KR 62 PP 790 KRE 62 PP 818.2 62 24 29 80 49.5 11 M24×1.5 25 8 4 0.8 44
KRV 62 802 KRVE 62 830.2 62 24 29 80 49.5 11 M24×1.5 25 8 4 0.8 44
KRV 62 PP 802 KRVE 62 PP 830.2 62 24 29 80 49.5 11 M24×1.5 25 8 4 0.8 44
NUKR 62 795 NUKPE 62 823.5 62 24 29 80 49.5 11 M24×1.5 25 8 4 0.8 38
72 KR 72 1040 KRE 72 1068.2 72 24 29 80 49.5 11 M20×1.5 25 8 4 0.8 44
KR 72 PP 1040 KRE 72 PP 1068.2 72 24 29 80 49.5 11 M24×1.5 25 8 4 0.8 44
KRV 72 1045 KRVE 72 1073.2 72 24 29 80 49.5 11 M24×1.5 25 8 4 0.8 44
KRV 72 PP 1045 KRVE 72 PP 1073.2 72 24 29 80 49.5 11 M24×1.5 25 8 4 0.8 44
NUKR 72 1200 NUKPE 72 1038.2 72 24 29 80 49.5 11 M24×1.5 25 8 4 0.8 44
80 KR 80 1550 KRE 80 1610 80 30 35 100 63 15 M30×1.5 32 8 4 1 53
KR 80 PP 1550 KRE 80 PP 1610 80 30 35 100 63 15 M30×1.5 32 8 4 1 53
KRV 80 1561 KRVE 80 1621 80 30 35 100 63 15 M30×1.5 32 8 4 1 53
KRV 80 PP 1561 KRVE 80 PP 1621 80 30 35 100 63 15 M30×1.5 32 8 4 1 53
NUKR 80 1800 NUKPE 80 1600 80 30 35 100 63 15 M30×1.5 32 8 4 1 47
85 KR 85 1740 KRE 85 1800 85 30 35 100 63 15 M30×1.5 32 8 4 1 53
KR 85 PP 1740 KRE 85 PP 1800 85 30 35 100 63 15 M30×1.5 32 8 4 1 53
90 KR 90 1950 KRE 90 2571 90 30 35 100 63 15 M30×1.5 32 8 4 1 53
KR 90 PP 1950 KRE 90 PP 2571 90 30 35 100 63 15 M30×1.5 32 8 4 1 53
KRV 90 1970 KRVE 90 2030 90 30 35 100 63 15 M30×1.5 32 8 4 1 53
KRV 90 PP 1970 KRVE 90 PP 2030 90 30 35 100 63 15 M30×1.5 32 8 4 1 53
NUKR 90 2300 NUKPE 90 2571 90 30 35 100 63 15 M30×1.5 32 8 4 1 47

Pictures 

Shipping  
By Air  / By Sea /By Express
 a. For small weight or Urgent, goods will be delivery  by Express DHL/FedEX/UPS/TNT/EMS
 b. For max production,goods will be shipped by sea/by air.
 c. According to your requirements

                                    
 Our Services             
 a. Samples provided for free charge .
 b. Strict Inspection ,and the best quality price with reasonable price bearings provided .
 c. OEM service provided.
 d. Delivery products from our factory warehouse , delivery time is short .
 e. Warranty for 6 months
 f.  After sale service at any time 

Company Information 
Guanxian Xinyan Pillow Block Bearing Co.,ltd. is based in ZheJiang (CHINA) since 2011 and is 1 of the biggest authorized manufactures and exporters of bearing. We’ve been dedicated to provide all types of hiigh quality bearings to OEM, Retailers and traders throughout international market since the moment established. 
Pillow block bearings, bearings housing,insert bearings and deep groove ball bearings are all we specialized. We are also developing nonstandard bearings as per the drawings from customers. 
Up to now, we have exported our goods to Italy, Brazil, Argentina, Poland, India, Pakistan, Bangladesh,Thailand etc. 
First class service, efficient delivery methods, the most competitive quality-price ratio, we dedicated to provide you quality brand bearings. Sincerely welcome new and old customers visit and build cooperation.
  

WHY CHOOSE XINYAN?  
NO.1   We provide our customers the most Comprehensive service and we’ll do our best to deal with problems our customers             encountered to ensure our customers SATISFACTION
NO.2   The high qualityof our products means that it has long life, high speed, low noise, low vibration and low friction
NO.3   Be honesty, be professional is our faith; good attitude, timely response, quick delivery, consideration of every detail is our             working style
NO.4   Manufactured by ourself, enough storage space, enough inventory, high producing efficiency we possess, the most favorable price we offer to our customers makes sure every deal have a happy end

FAQ
Q: How many the MOQ of your company?
A: Our company MOQ is 1pcs.
 
Q: Could you accept OEM and customize?
A:YES, we can customize for you according to sample or drawing.
 
Q: Could you supply sample for free?
A: Yes, we can supply sample for free, but need our customer afford freight.
Q : Does your factory have CE?
A: Yes, we have ISO 9001:2008, and SASO. If you want other CE, we can do for you.
 
Q: Is it your company is factory or Trade Company?
 A: We have our own factory; our type is factory + trade.
 
Q:  What time the guarantee of your bearing quality guarantee period:?
A: 6 months ,Customer need supply photos and send bearing back.
 
Q: Could you tell me the payment term of your company can accept?
A: T/T, Western Union, PayPal, T/T, L/C
 
Q: Could you tell me the delivery time of your goods?
A: 7-15 days , mostly base on your order quantity  
/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Cage: With Cage
Rows Number: Single
Style: Without Outer Ring, With Outer Ring, Without Inner Ring
Material: Bearing Steel
Type: Open
Application: as Parts of All Kinds of
Samples:
US$ 0.5/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

cam roller

What are the signs that indicate a need for cam roller replacement or maintenance, and how can they be diagnosed?

Proper maintenance and timely replacement of cam rollers are essential for ensuring their optimal performance and longevity. Several signs indicate the need for cam roller replacement or maintenance, and diagnosing these signs can help identify potential issues. Here are some common signs and diagnostic methods:

  • Abnormal Noise: Unusual or excessive noise during the operation of cam rollers can indicate problems. Grinding, squeaking, or rattling sounds may suggest issues such as worn bearings, misalignment, or insufficient lubrication. Conduct a thorough inspection and listen for any abnormal noise while the cam rollers are in motion.
  • Irregular Motion: If the cam rollers exhibit irregular or jerky motion instead of smooth and consistent rolling, it may indicate problems. This can be caused by misalignment, damaged cam profiles, worn bearings, or debris accumulation. Observe the motion of the cam rollers carefully to detect any irregularities or inconsistencies.
  • Inconsistent Tracking: Cam rollers should provide accurate and consistent tracking of objects or components along the designated path. If there are deviations or errors in the tracking, it may indicate misalignment, worn cam profiles, damaged rollers, or track irregularities. Monitor the tracking performance of the cam rollers and check for any inconsistencies or deviations from the desired path.
  • Excessive Wear: Visual inspection of the cam rollers can reveal signs of excessive wear. Check for signs such as worn or flattened surfaces, pitting, cracks, or deformation. Excessive wear can occur due to high loads, misalignment, inadequate lubrication, or prolonged usage. Regularly inspect the cam rollers for any visible signs of wear or damage.
  • Uneven Load Distribution: Improper load distribution across the cam rollers can lead to premature wear or failure. Inspect the cam rollers and associated components for any signs of uneven loading, such as uneven wear patterns, excessive wear on specific rollers, or track distortions. Uneven load distribution may result from misalignment, damaged components, or improper installation.
  • Increased Friction: Excessive friction during the rolling motion of cam rollers can impair their performance and lead to accelerated wear. Monitor the rolling motion and check for signs of increased friction, such as resistance, overheating, or uneven movement. Excessive friction can be caused by misalignment, inadequate lubrication, debris accumulation, or worn components.
  • Loss of Efficiency: A decrease in the efficiency of the cam roller system can indicate underlying issues. If the system requires more power, shows reduced speed, or exhibits decreased accuracy compared to its normal operation, it may indicate problems with the cam rollers. Monitor the system’s performance and compare it with the expected efficiency to identify any loss in performance.

When diagnosing these signs, it is important to follow manufacturer guidelines and recommended maintenance procedures. Diagnostic methods may include visual inspection, listening for abnormal sounds, measuring performance parameters, checking alignment, conducting lubrication analysis, or consulting with qualified technicians or maintenance professionals.

Regular maintenance and inspection schedules should be established to monitor the condition of cam rollers. By identifying signs of wear, misalignment, or other issues early on, timely maintenance or replacement can be performed to prevent further damage, maintain optimal performance, and extend the lifespan of the cam roller system.

cam roller

Can cam rollers be customized for specific industries or machinery configurations?

Yes, cam rollers can be customized to meet the specific requirements of different industries or machinery configurations. The versatility and adaptability of cam rollers make them suitable for a wide range of applications. Customization allows for the optimization of cam rollers to match the unique needs of various industries and machinery configurations. Here’s a detailed explanation of how cam rollers can be customized:

  • Size and Dimensions: Cam rollers can be customized in terms of size and dimensions to suit specific machinery configurations. The outer diameter, inner diameter, width, and overall dimensions of the cam roller can be adjusted to fit within the available space and align with the requirements of the machinery or system.
  • Load Capacity: Customization of cam rollers can involve enhancing the load-carrying capacity to meet the demands of specific industries or heavy-duty applications. By utilizing different materials, heat treatments, or bearing arrangements, cam rollers can be designed to withstand higher radial and axial loads, ensuring reliable performance under challenging operating conditions.
  • Specialized Coatings and Materials: Certain industries or environments may require cam rollers with specialized coatings or materials to withstand corrosive or abrasive conditions. Customization can involve the application of coatings, such as corrosion-resistant coatings or low-friction coatings, to enhance the durability and performance of the cam rollers in specific operating environments.
  • Sealing Options: Cam rollers can be customized with various sealing options to provide protection against contaminants, dust, moisture, or other environmental factors. Custom sealing arrangements, such as rubber seals or labyrinth seals, can be incorporated into the design to ensure the longevity and reliability of the cam rollers in specific industries or applications.
  • Attachment and Mounting: Customization of cam rollers can include modifications to the attachment and mounting options. Different industries or machinery configurations may require specific attachment methods or mounting configurations. Cam rollers can be customized with different stud types, yoke configurations, or eccentric collar options to ensure easy and secure attachment to the moving parts of the machinery or system.
  • Specialized Performance Features: Depending on the industry or application, cam rollers may need specialized performance features. Customization can involve incorporating features such as integrated lubrication systems, temperature sensors, or shock-absorbing elements to enhance the performance, reliability, or monitoring capabilities of the cam rollers in specific industries or machinery configurations.

By collaborating with manufacturers or suppliers, industries can work to customize cam rollers to meet their specific requirements. Customization may involve engineering analysis, design modifications, and material selection to ensure the optimal performance and compatibility of the cam rollers with the targeted industries or machinery configurations.

In summary, cam rollers can be customized for specific industries or machinery configurations. Customization options include adjusting size and dimensions, enhancing load capacity, utilizing specialized coatings and materials, incorporating sealing options, modifying attachment and mounting methods, and adding specialized performance features. By tailoring cam rollers to specific industry or machinery needs, customization ensures optimal performance, longevity, and compatibility with the targeted applications.

cam roller

What are the different types and configurations of cam rollers available in the market?

Cam rollers, also known as cam followers or track rollers, are available in various types and configurations to suit different applications and requirements. The selection of the appropriate type and configuration depends on factors such as load capacity, speed, operating conditions, and specific application needs. Here’s a detailed explanation of the different types and configurations of cam rollers available in the market:

  • Stud-Type Cam Rollers: Stud-type cam rollers have a stud or bolt that extends from the roller’s outer ring. The stud allows for secure attachment to the moving part of the mechanical system. Stud-type cam rollers are commonly used in applications that require high radial loads and moderate thrust loads, such as camshaft followers in engines or support rollers in conveyor systems.
  • Yoke-Type Cam Rollers: Yoke-type cam rollers have a yoke or mounting flange that provides a broader surface area for attachment. The yoke is typically bolted or clamped to the moving component. Yoke-type cam rollers are suitable for applications with higher radial and axial loads, such as in heavy machinery or industrial automation systems.
  • Full Complement Cam Followers: Full complement cam followers have a design that incorporates a maximum number of rolling elements, providing high load-carrying capacity. These cam rollers do not have a cage or roller retainer, allowing for more rollers to be included. Full complement cam followers are commonly used in applications where maximum load capacity is required, but speed and precision may be lower priority.
  • Caged Cam Followers: Caged cam followers have a cage or roller retainer that separates and guides the rolling elements. The cage maintains proper spacing and alignment of the rollers. Caged cam followers offer advantages such as reduced friction, improved speed capability, and better roller control. They are suitable for applications that require higher speeds, precision, and controlled roller movement.
  • Hexagonal Bore Cam Followers: Hexagonal bore cam followers have a hexagonal-shaped inner bore instead of a cylindrical bore. This design allows for direct tightening using a hexagonal wrench, simplifying installation and adjustment. Hexagonal bore cam followers are commonly used in applications where frequent adjustment or repositioning is required, such as in printing machinery or packaging equipment.
  • Stud-Type with Eccentric Collar: This type of cam roller features a stud with an eccentric collar. The eccentric collar allows for easy adjustment of the roller’s position by rotating the collar, providing a simple means of adjusting the preload or clearance in the system. Stud-type cam rollers with eccentric collars are commonly used in applications that require precise adjustment, such as in tensioning systems or in machinery with adjustable clearances.

These are some of the commonly available types and configurations of cam rollers in the market. Each type offers specific advantages and is designed to meet the demands of different applications. It is important to consider factors such as load capacity, speed requirements, precision, and specific application needs when selecting the appropriate type and configuration of cam roller.

In summary, the market offers a variety of cam roller types and configurations, including stud-type, yoke-type, full complement, caged, hexagonal bore, and stud-type with eccentric collar. Each type has its own advantages and is suitable for specific applications based on load capacity, speed, precision, and adjustability requirements.

China Custom 1688 China Factory Good Quality Wholesale Needle Roller Bearings  China Custom 1688 China Factory Good Quality Wholesale Needle Roller Bearings
editor by CX 2024-01-24

China Needle rolleraxial cylindrical roller bearings combine bearing ZARF3080 rocker arm pivots, pumps, compressors, and transmission ball bearing

Type: Roller, roller
Construction: cylindrical, needle
Relevant Industries: Producing Plant, Building works , Vitality & Mining
Product Number: ZARF3080
Precision Ranking: P6
Seals Kind: Open
Quantity of Row: Double row
Material: Bearing Metal * Axial Dynamic Load Ranking Ca (N)39000 * ECLASS amount * ECLASS2 number * Medias descriptionNeedle roller/axial cylindrical roller bearings ZARF..-L, double course, for screw mounting, extended shaft finding washer Item Specs Needle roller/axial cylindrical roller bearings merge bearing ZARF3080 rocker arm pivots, pumps, linear movement bearing KH1228B Linear bearing KH1228 PP linear motion ball slide models 12x19x28 mm compressors, and transmission * Item NumberZARF3080-L-Tv set-A * Also recognized as0* EAN4* CategoryNeedle Roller and Cage AssemblyWeight and Dimensions * Interior (d) MM30 * Outer (D) MM80 * Width (B) MM65 * Weight (kg).9 Revenue AND Service Network Effective Undertaking Rock arm pump transmission Equivalent Merchandise Technical Day

ZARF 1560 L TN ZARF1560-L-Television ZARF 55145 L TN ZARF55145-L-Tv set ZARN 4075 L TN ZARN4075-L-Television
ZARF 1560 TN ZARF1560-Tv ZARF 55145 TN ZARF55145-Tv set ZARN 4075 TN ZARN4075-Television
ZARF 1762 L TN ZARF1762-L-Television set ZARF 60150 L TN ZARF60150-L-Television ZARN 4090 L TN ZARN4090-L-Tv set
ZARF 1762 TN ZARF1762-Tv ZARF 60150 TN ZARF60150-Tv set ZARN 4090 TN ZARN4090-Tv
ZARF 2068 L TN ZARF2068-L-Tv ZARF 65155 L TN ZARF65155-L-Television set ZARN 45105 L TN ZARN45105-L-Television set
ZARF 2068 TN ZARF2068-Television set ZARF 65155 TN ZARF65155-Television set ZARN 45105 TN ZARN45105-Tv set
ZARF 2080 L TN ZARF2080-L-Tv set ZARF 70160 L TN ZARF70160-L-Television set ZARN 4580 L TN ZARN4580-L-Tv set
ZARF 2080 TN ZARF2080-Tv ZARF 70160 TN ZARF70160-Tv set ZARN 4580 TN ZARN4580-Tv
ZARF 2575 L TN ZARF2575-L-Television set ZARF 75185 L TN ZARF75185-L-Tv set ZARN 50110 L TN ZARN50110-L-Television
ZARF 2575 TN ZARF2575-Tv ZARF 75185 TN ZARF75185-Tv set ZARN 50110 TN ZARN50110-Television
ZARF 2590 L TN ZARF2590-L-Tv set ZARF 95710 L TN ZARF95710-L-Tv ZARN 5090 L TN ZARN5090-L-Television
ZARF 2590 TN ZARF2590-Tv set ZARF 95710 TN ZARF95710-Television ZARN 5090 TN ZARN5090-Television
ZARF 35715 L TN ZARF35715-L-Television ZARN 1545 L TN ZARN1545-L-Television set ZARN 55115 L TN ZARN55115-L-Television
ZARF 35715 TN ZARF35715-Television set ZARN 1545 TN ZARN1545-Tv set ZARN 55115 TN ZARN55115-Tv
ZARF 3080 L TN ZARF3080-L-Tv ZARN 1747 L TN ZARN1747-L-Television ZARN 60120 L TN ZARN60120-L-Tv set
ZARF 3080 TN ZARF3080-Television set ZARN 1747 TN ZARN1747-Television set ZARN 60120 TN ZARN60120-Tv set
ZARF 35110 L TN ZARF35110-L-Television set ZARN 2052 L TN ZARN2052-L-Tv set ZARN 65125 L TN ZARN65125-L-Television
ZARF 35110 TN ZARF35110-Television ZARN 2052 TN ZARN2052-Tv ZARN 65125 TN ZARN65125-Tv set
ZARF 3590 L TN ZARF3590-L-Television ZARN 2062 L TN ZARN2062-L-Tv set ZARN 70130 L TN ZARN70130-L-Television
ZARF 3590 TN ZARF3590-Tv ZARN 2062 TN ZARN2062-Television set ZARN 70130 TN ZARN70130-Tv
ZARF 45710 L TN ZARF45710-L-Tv ZARN 2557 L TN ZARN2557-L-Tv set ZARN 75155 L TN ZARN75155-L-Television set
ZARF 45710 TN ZARF45710-Television set ZARN 2557 TN ZARN2557-Tv ZARN 75155 TN ZARN75155-Television
ZARF 40115 L TN ZARF40115-L-Tv set ZARN 2572 L TN ZARN2572-L-Television ZARN 90180 L TN ZARN90180-L-Tv set
ZARF 40115 TN ZARF40115-Tv ZARN 2572 TN ZARN2572-Television ZARN 90180 TN ZARN90180-Television
ZARF 45105 L TN ZARF45105-L-Tv ZARN 3062 L TN ZARN3062-L-Tv ZAXFM 571 ZAXFM571
ZARF 45105 TN ZARF45105-Television ZARN 3062 TN ZARN3062-Tv ZAXFM 0571 ZAXFM 0571
ZARF 45130 L TN ZARF45130-L-Television set ZARN 3080 L TN ZARN3080-L-Tv ZAXFM 571 ZAXFM571
ZARF 45130 TN ZARF45130-Television ZARN 3080 TN ZARN3080-Tv set ZAXFM 1055 ZAXFM1055
ZARF 50115 L-TN ZARF50115-L-Tv ZARN 3570 L TN ZARN3570-L-Tv ZAXFM 1255 ZAXFM1255
ZARF 50115 TN ZARF50115-Tv set ZARN 3570 TN ZARN3570-Tv set ZAXFM 1555 ZAXFM1555
ZARF 50140 L TN ZARF50140-L-Television set ZARN 3585 L TN ZARN3585-L-Television ZAXFM 2075 ZAXFM2075
ZARF 50140 TN ZARF50140-Tv ZARN 3585 TN ZARN3585-Television ZAXFM 2575 ZAXFM2575
Certifications All varieties certifications Diverse varieties of certification can fulfill your all requests for promoting them. Packing & Shipping Huge worehouse.Can offer you basic types with right away shipping and delivery.As we have huge inventory. By airExpress:DHL TNT UPS FEDEX By air to airport By seaFOB CIF CFR Recommend Goods FAQ 1. who are we?We are based in ZheJiang , China, commence from 2009,sell to North The united states(sixteen.40%),Mid East(15.20%),Northern Europe(ten.forty%),SouthAmerica(ten.40%),Central The united states(9.00%),Southern Europe(8.twenty%),Western Europe(6.eighty%),Africa(4.eighty%),Domestic Marketplace(4.eighty%),SoutheastAsia(4.twenty%),South Asia(3.40%),Eastern Europe(3.40%),Oceania(3.00%). There are total about eleven-50 folks in our business office.2. how can we assure quality?Always a pre-generation sample prior to mass productionAlways final Inspection just before shipment3.what can you acquire from us?Bearings,wheel bearing,NSK Bearing, 57EH83A4001 closed loop stepper motor 2..6N.M servo motor + push CL57 motor package For 3D Printer Check nema 23 near loop ball bearing,roller bearing4. what providers can we supply?Approved Shipping and delivery Phrases: FOB,CFR,CIF,EXW,FAS,CIP,FCA,CPT,DEQ,DDP,DDU,Specific Supply,DAF,DES;Accepted Payment Forex:USD,EUR,JPY,CAD,AUD,HKD,GBP, Rotation Speed 1.0rpm Safety Motor Max Load 40kgs Disco Mirror Ball Motor CNY,CHFAccepted Payment Kind: T/T,L/C,D/P D/A,MoneyGram,Credit Card,PayPal,Western Union,Money,EscrowLanguage Spoken:English,Chinese,Spanish,Japanese,Portuguese,German,Arabic,French,Russian,Korean,Hindi, 22338 22340 22344 22348 GCr15P6 Spherical Roller Bearing Italian

Industrial applications of casing

For rotating and sliding parts, bushings are an important part of the machine. Due to their anti-friction properties and load-carrying capacity, they are an important part of many different industrial processes. Bushings play a vital role in industries such as construction, mining, hydropower, agriculture, transportation, food processing and material handling. To learn more about the benefits of bushings, read on. You’ll be amazed how much they can help your business!
bushing

type

When comparing enclosure types, consider the material and how it will be used. Oilite bushings are made of porous material that draws lubricant into the liner and releases it when pressure is applied. These are manufactured using a sintered or powered metal process. Copper and tin are the most commonly used materials for making copper bushings, but there are other types of metal bushings as well.
Another popular type is the plain bearing. This type reduces friction between the rotating shaft and the stationary support element. This type provides support and load bearing while relying on soft metal or plastic for lubrication. Journal bearings are used to support the linear motion of the engine crankshaft in large turbines. They are usually babbitt or hydrodynamic with a liquid film lubricant between the two halves.
The oil-impregnated paper sleeve is made of high-quality kraft insulating paper. These bushings contain two layers of capacitor grading, with the innermost layer electrically connected to the mounting flange. These are mature processes and are widely used in different voltage levels. CZPT Electric (Group) Co., Ltd. provides UHV DC and AC oil-impregnated paper wall bushings for environmental control rooms.
Electrical bushings are used to transmit electricity. These can be transformers, circuit breakers, shunt reactors and power capacitors. The bushing can be built into the bushing or through the bushing. The conductors must be able to carry the rated current without overheating the adjacent insulation. A typical bushing design has a conductor made of copper or aluminum with insulation on all other sides. If the bushing is used in a circuit, the insulation needs to be high enough to prevent any leakage paths.
Voltage and current ratings of electrical bushings. Solid type electrical bushings typically have a center conductor and a porcelain or epoxy insulator. These bushings are used in small distribution transformers and large generator step-up transformers. Their test voltage is typically around 70 kV. Subsequent applications of this bushing may require a lower halfway release limit. However, this is a common type for many other applications.
bushing

application

Various industrial applications involve the use of casing. It is an excellent mechanical and chemical material with a wide range of properties. These compounds are also packaged according to national and international standards. Therefore, bushings are used in many different types of machines and equipment. This article will focus on the main industrial applications of casing. This article will also explain what a casing is and what it can do. For more information, click here. Casing application
Among other uses, bushing assemblies are used in aircraft and machinery. For example, a fuel tank of an aircraft may include baffle isolator 40 . The bushing assembly 16 serves as an interface to the fuel tank, allowing electrical current to flow. It can also be used to isolate one component from another. In some cases, bushing assemblies are used to provide a tight fit and reduce electrical resistance, which is important in circuits.
The benefits of casing go beyond reducing energy transmission. They reduce lubrication costs. If two metal parts are in direct contact, lubrication is required. Thus, the bushing reduces the need for lubrication. They also allow parts of the car to move freely. For example, rubber bushings may begin to deteriorate due to high internal temperatures or cold weather. Also, oil can affect their performance.
For example, bushing CTs in oil and gas circuit breakers are used as window current transformers. It consists of a toroidal core and secondary windings. The center conductor of the bushing acts as the single-turn primary of the BCT. By tapping the secondary winding, the ratio between primary and secondary can be changed. This information can be found on the asset nameplate.
Among other uses, bushings are used in diagnostic equipment. These components require precise positioning. Fortunately, air sleeves are perfect for this purpose. Their frictionless operation eliminates the possibility of misalignment. In addition, products based on porous media help minimize noise. A casing manufacturer can advise you on the best product for your equipment. Therefore, if you are looking for replacement bushings for your existing equipment, please feel free to contact Daikin.

Material

Dry ferrule cores were selected for study and examined under an Olympus polarizing microscope (BX51-P). Core slices showing layers of aluminum foil with a distance of approximately 2 cm between adjacent capacitor screens. The aluminum foil surface has a multi-layered structure with undulations due to shrinkage and crepe. Differences between the two types of foils are also revealed.
A typical metal bushing material consists of a high-strength metal backing and a solid lubricant. These materials have higher load-carrying capacity and low friction during operation. Additionally, they are precision machined to tight tolerances. They also offer better thermal conductivity and better fatigue resistance. The accuracy of the metal bushing is improved due to the re-machining process that takes place after the bearing is assembled. Additionally, metal bushing materials are more resistant to wear than plastic bushing materials.
Plastic bushings are relatively inexpensive and readily available off the shelf. Also, the price of custom plastic bushings is relatively low. However, they are not recommended for heavy duty applications. Plastics degrade under high loads and can damage mating parts. Also, if the plastic bushings are not manufactured accurately, they can become misaligned. These are just some of the reasons for choosing metal bushings over plastic.
A mechanically bonded bushing 40 is placed over the stabilizer bar and compressed into the outer sleeve/bracket assembly. The outer metal member includes slotted holes that compensate for the tolerance stacking between the first and second bushing assemblies. Pre-assembly allows the assembly plant to receive a complete assembly ready for vehicle assembly, rather than sub-assembly at the vehicle manufacturing plant.
bushing

cost

Control arm bushings are a major component of modern vehicle suspension systems. Damaged bushings can negatively affect the handling and performance of your car. Replacing bushings on a car can cost $200 to $500. While that’s pretty cheap for a handful of control bushings, replacing the entire suspension system could set you back over $1,200. Thankfully, if you want to repair or replace the bushing yourself, you can do it yourself for a fraction of the cost.
If you decide to replace the control arm bushing yourself, it’s best to shop around for the best price. Many auto parts stores offer cheaper bushings that you don’t have to spend a fortune on. Even if you don’t drive for years, rubber can degrade and create cracks in the material. These cracks can be as deep as three-eighths of an inch. This makes it dangerous to drive a car with damaged control arm bushings.
Hiring a mechanic might be a good idea if you don’t like doing the work yourself. You can save money and time by repairing the control arm yourself, but you may have to hire a mechanic to do the job. Replacing the front sway bar bushing alone can cost between $450 and $900. While these components are relatively inexpensive, you can replace them for a better-handling car.
In some cases, sizing the bushings is a more economical option, but if you want to replace your entire suspension system, it’s better to buy a brand new lower limit. You can even save labor by buying a replacement part fork with a good lower portion. In addition to improving your car’s handling and ride, new bushings will add to your car’s overall value. If you are not sure which parts you need, ask your mechanic for a quote.
While the cost of replacing control arm bushings is relatively low, it’s a good idea to compare quotes from multiple mechanics. By getting multiple quotes for the same repair, you can save as much as $50 to $100 on the total cost of your car. In addition to labor costs, parts and labor can vary, so shop around to find the mechanic best suited for your car. There’s no reason to settle for sub-par service when you can save $50 or more!

China Needle rolleraxial cylindrical roller bearings combine bearing ZARF3080 rocker arm pivots, pumps, compressors, and transmission     ball bearingChina Needle rolleraxial cylindrical roller bearings combine bearing ZARF3080 rocker arm pivots, pumps, compressors, and transmission     ball bearing
editor by czh 2023-02-19

China HK2216 HK2220 2RS sealed drawn cup needle roller bearings with Great quality

Bore Measurement: 5 – 415 mm
Relevant Industries: Machinery Repair Shops, Retail, Printing Outlets, Advertising and marketing Company
Sort: Needle
Model Quantity: HK2216 HK2220 2RS
Precision Score: P0
Seals Kind: Open
Number of Row: Single row
Title: HK2216 HK2220 2RS sealed drawn cup needle roller bearings
Substance: chrome metal
Function: Large top quality
Services: OEM Tailored Services
Sample: Obtainable
Packaging Specifics: industrial package
Port: HangZhou

HK2216 HK2220 2RS sealed drawn cup needle roller bearings

Our products

Needle bearing index:
Drawn cup needle roller bearings, HK, BK, HK 2RS, BK RS Drawn cup needle roller bearings, TA, VTV 220v motor 100W AC YN100-a hundred gear reducer motor 180W control speed motor with equipment box TLA Drawn cup needle roller bearings, Inch dimensions SCE, BCE… Drawn cup needle roller bearings complete complement, F, MF Drawn cup needle roller clutch, HF, CZPT Needle roller and cage assemblies, K, K…ZW Needle roller and cage assemblies, CZPT hub wheel motor 6.5inch 24V 350W 160RPM 150kg load IP65 4096-wire encoder push wheel dc electrical motor for robot engines rod use KZK, KBK Needle roller bearings without having inner ring, NK, RNA, NKS Needle roller bearings, NKI, NA Needle roller bearings, flanges, with no inner ring, China provider 32036x Bearing 32306 Equipment 32306 Bearing RNAO, RNAO, ZW Needle roller bearings, flanges, with inner ring, NAO…ZW Needle roller bearings with no interior ring entire complement, RNAV Needle roller bearings with inner ring complete complement, NAV Axial thrust needle roller and cage assemblies, AXK, Custom made Deep Groove Ball Bearings Large Top quality Chromium Steel Motor Bearings AXW Axial thrust needle roller and cage assemblies, inch size TC

Item Catalogue

SCE34-TNBA34ZOHSCE48 PSCE146BA146ZOH
SCE36BA36ZOHSCE56 PSCE148BA148ZOH
SCE44BA44ZOHSCE58 PSCE1412BA1412ZOH
SCE45BA45ZOHSCE66 PSCE1416BA1416ZOH
SCE47BA47ZOHSCE69 PSCE1516BHA87ZOH
SCE55BA55ZOHSCE86 PSCE166BA166ZOH
SCE57BA57ZOHSCE89 PSCE168BA168ZOH
SCE59BA59ZOHSCE109 PSCE1612BA1612ZOH
SCE65BA65ZOHSCE1011 PSCE1614BA1614ZOH
SCE66BA66ZOHSCE129 PSCE1616BA1616ZOH
SCE67BA67ZOHSCE1211 PSCE188BA188ZOH
SCE68BA68ZOHSCE2012 PSCE1812BA1812ZOH
SCE610BA610ZOHSCE2014 PSCE1814BA1814ZOH
SCE78BA78ZOHSCE2414 PSCE1816BA1816ZOH
SCE710BA710ZOHSCE2416 PSCE1820BA1820ZOH
SCE85BA85ZOHSCE2422 PSCE208BA208ZOH
SCE86BA86ZOHSCE46 PPSCE2571BA2571ZOH
SCE87BA87ZOHSCE47 PPSCE2012BA2012ZOH
SCE88BA88ZOHSCE49 PPSCE2016BA2016ZOH
SCE89BA89ZOHSCE57 PPSCE2571BA2571ZOH
SCE810BA810ZOHSCE59 PPSCE2110BA2110ZOH
SCE812BA812ZOHSCE67 PPSCE228BA228ZOH
SCE95BA95ZOHSCE68 PPSCE2212BA2212ZOH
SCE96BA96ZOHSCE610 PPSCE2213BA2213ZOH
SCE97BA97ZOHSCE87 PPSCE2216BA2216ZOH
SCE98BA98ZOHSCE810 PPSCE2220BA2220ZOH
SCE99BA99ZOHSCE812 PPSCE248BA248ZOH

Application

Factory

Packaging
FAQQ: Are you trading organization or maker ?A: We are manufacturing facility.

What is a bushing?

If you’ve ever wondered what an enclosure is, you’ve come to the right place. This article will provide an overview of different types of housings, including air-insulated, oil-impregnated porous bronze, and epoxy-impregnated capacitor cells. After reading this article, you will be better equipped to make an informed choice about the type of bushings your truck needs.
bushing

air insulating sleeve

When choosing bushings for your electrical application, you need to look for bushings with long-lasting insulation. In addition to being durable, bushings must have the correct design shape and material to remain effective over time. Porcelain was used in early casing designs and was chosen for indoor and outdoor applications due to its low cost and low linear expansion. Porcelain also requires a lot of metal fittings and flexible seals to remain effective.
Solid bushings have a center conductor and a porcelain or epoxy insulator. They are used in low voltage electrical applications such as small distribution transformers and circuit switches. However, their low radial capacity limits their use in high-voltage applications, so they are limited to circuit switches and other low-voltage equipment. The electrical service duty of the bushing determines the type of insulation required.
Another type of air-insulated bushing is made of conductive metal, which reduces heat transfer. This design enables it to operate over a range of temperature conditions. Additionally, air-insulated bushings are generally more effective than gas-insulated bushings in a range of applications. The main difference between air-insulated bushings and gas-insulated bushings is the insulating material. While gas-insulated bushings are usually made of high-quality materials, high-quality materials are still preferred in some applications.
Elliott # B series insulators are 25 kV class and pressure molded cycloaliphatic epoxy resins. They feature knurled brass inserts and 16 UNC threads. If you choose this type, make sure it matches the exact diameter of your Elliott Class 25 kv air insulated bushing. These insulators also provide overall shielding and require openings to fit inch diameters.
There are two types of air-insulated bushings: air-to-air and oil-to-oil. Oil is a stronger dielectric than air, and air-to-oil bushings are used to connect atmospheric air to oil-filled equipment. They are available for solid and capacitive hierarchies. So, which one is right for you? Just choose the right insulation to make your equipment as efficient as possible.

Oil Impregnated Porous Bronze Bushings

Oil-impregnated porous bronze (PbB) bushings are one of the best options for lubricating metal bearings. Lubrication is maintained even in high temperature applications as oil penetrates into the pores of the bronze. They are also self-lubricating and maintenance-free. Manufactured by CZPT, the Oil Impregnated Bronze Bushing is a powder metal process that is uniformly lubricated by a uniform oil film. This type of bearing is one of the most efficient in terms of precision performance.
One major difference between oil-impregnated bronze bushings and standard cast bronze bushings is their manufacturing process. Oil-impregnated bronze bushings are pressed from powder and then sintered to form a hardened part. This method is very effective for high-volume manufacturing, but it also has its limitations. Oil-impregnated bronze bushings are cheaper and more efficient, but they have mechanical limitations.
The production of oil-impregnated porous bronze bushings is simple. Powder bronze bushings are pressed and vacuum sealed by forcing oil into the pores. The low stress properties of oil-impregnated bronze bushings make them easier to manufacture in high volume. It also does not require additional lubrication. However, oil-impregnated porous bronze bushings have relatively low mechanical strength and are not recommended for applications where high temperatures are present.
Oil Impregnated Porous Bronze is also known as BPPB. Unlike traditional oil-impregnated bronze bushings, BPPB bushings have a high oil retention capacity. This means they will last a long time and you will save a lot of maintenance costs. But be careful. Porous bronze bushings can only last so long without oil.
Oil-impregnated bronze bushings are a good choice if dimensional consistency is important. BP bronze bushings have the same C dimension as solid metal bushings. While the CZPT is a ghost of the past, there are now many powder metal manufacturers producing BP housings. Their C of F values ​​range from 0.04 to 0.08.
bushing

Epoxy Impregnated Capacitor Batteries

Epoxy impregnated condenser core sleeves are conductive paper used in air conditioning systems. The paper core is coated with epoxy resin and the insulating shell is silicone rubber. RIP bushings have excellent electrical properties, are fire resistant and are relatively small. However, the process of making these products is not easy and mistakes are common. These defects manifest as cracks or other structural damage in the capacitor cells.
RIF (Resin Impregnated) bushings feature a finely graded design. The capacitor core is made of glass fiber impregnated with epoxy resin. The outer insulation is made of silicone rubber sheds glued directly to the capacitor core. These bushings are designed for small clearances, so no filler material is required.
In order to determine whether the RIP sleeve is void-free and dry, the insulating paper must be impregnated with epoxy resin. The process is similar to making conventional condenser core sleeves, but with greater flexibility and robustness. The main difference between RIP bushings and conventional insulators is the epoxy content.
Capacitor grading bushings are also available. These bushings increase the electric field at the ends of the capacitor core plates. The higher the temperature, the higher the electric field. These properties make resin-impregnated capacitor mandrel sleeves reliable. However, capacitor grade bushings have higher electric fields than nonlinear bushings.
The capacitor core of the present invention is made by winding paper around the winding tube 3 . The paper may contain an intermediate conductive foil. The winding tube is then covered with electrical insulator. Afterwards, the capacitor core 1 will be RIP and electrically connected to the electrical conductor 6 .
To further characterize the performance of RIPs, thermal shock current (TSC) was used to determine their trap parameters. Unmodified epoxy resin and nano-SiO2 modified RIP were tested. The RIP samples were polarized under a 2 kV/mm electric field at 333 K for 10 min and then subcooled to 193 K with liquid nitrogen. TSC curves were obtained at 3 K/min and 383 K.
bushing

plastic bushing

Plastic bushings are essential for many industries. They protect wires and other mechanical parts. They come in many shapes and sizes and are often used as adapters when connecting two pipes or tubes of different diameters. They are available in a variety of materials including rubber, steel and various other plastics. Most bushings are cylindrical or conical in shape and made of shock absorbing material. They slide on rods or pipes to provide low friction motion.
Plastic bushings can be made from a variety of materials, including phenolic, polyethylene, and nylon. While phenolic resins have long been the preferred choice for heavy-duty applications, nylon is the most commonly used lining plastic. Nylon has several advantages, including low friction, no lubrication, quiet operation, and low wear. In addition to these advantages, it is easy to form and cast. In order to obtain better mechanical properties, fillers such as molybdenum disulfide can be added to the material. Plus, filled nylon parts resist deformation at temperatures up to 300 degrees Fahrenheit.
Another benefit of plastic bushings is their low cost. Much cheaper than metal, plastic is a versatile material that can be used in a variety of industries. A quick installation and replacement process makes them the first choice for users who need to install new components quickly. Plus, plastic bushings don’t wear out as quickly as metal, which is another benefit. And because the wear rate of plastic bushings is predictable, manufacturers can easily replace them before they start to fail. And they last longer, so you save time and money.
Plastic bushings are widely used in machinery with sliding and rotating shaft components. They have excellent load-carrying capacity and anti-friction properties. They are essential to many industries, including construction, mining, agriculture, hydropower, transportation and food processing. They are easy to install and come in a variety of sizes and shapes. They are very durable and very reliable. They reduce machine wear and are less expensive than bearings.

China HK2216 HK2220 2RS sealed drawn cup needle roller bearings     with Great qualityChina HK2216 HK2220 2RS sealed drawn cup needle roller bearings     with Great quality
editor by czh 2023-02-19

China Germany brand needle roller bearings KH-2540PP KH2540PP KH2540-PP bearing distributors

Sort: LINEAR
Relevant Industries: Garment Retailers, Building Content Stores, Manufacturing Plant, Machinery Restore Shops, Meals & Beverage Manufacturing unit, Farms, Restaurant, Property Use, Retail, HangZhou 1.5KW 220V AC Servos motor 2500RPM 6N.M. Solitary-Section cnc servos motor for industrial stitching machine Foodstuff Shop, Printing Outlets, Development works , Energy & Mining, Food & Beverage Shops
Precision Rating: open up
Product Quantity: KH2540PP
content: steel
Software: Industrial Equipment
Function: Extended Lifestyle
Bundle: First Packing
Service: OEM Personalized Solutions
Stock: Abundant
Payment: TT Paypal Weston Union MoneyGram
MOQ: 1 Piece
LUBRICATION: Oil
Industry: World-wide
Packaging Specifics: A. Plastic tubes Pack + Carton + Wooden PalletB. Roll Pack + Carton + Wood PalletC. Personal Box +Plastic bag+ Carton + Wooden Pallet
Port: HangZhou ZheJiang HangZhou HangZhou

Germany brand needle roller bearings KH-2540PP KH2540PP KH2540-PP

Product NO.
Quantity OF
Weight
MAIN Dimensions
BASIC LOAD Rating

BALL ROWS







DYNAMIC
STATIC



d
D
B
c(kgf)
Co(kgf)








KH0824
4
11.three
eight
fifteen
24
forty four
29








KH1026
four
fourteen.4
10
17
26
51
38








KH1228
5
eighteen.1
12
19
28
sixty three
fifty two








KH1428
5
20.six
fourteen
21
28
63
52








KH1630
5
27.two
16
24
30
82
sixty three








KH2030
six
32.7
twenty
28
thirty
97
81








KH2540
six
66
twenty five
35
forty
203
one hundred seventy








KH3050
7
ninety five
30
40
fifty
286
276








KH4060
8
a hundred and eighty
forty
52
60
449
454








KH5070
9
250
fifty
sixty two
70
561
643
Firm Data
Guozhou bearing Co., Ltd. is a skilled bearing maker. We are engaged in making high quality bearings. We can provide various varieties of bearings in accordance to customers’ needs. Our goods enjoy wonderful acceptance in the worldwide markets Asia, Europe and United states and so on.
Our items includ Deep groove ball bearings, Angular contact ball bearing, 32213 CZPT taper roller bearing 32213JR HR32213 32213D 32213J 65x120x32.75mm Thrust ball bearing, Taper roller bearings, Cylindrical roller bearings, Spherical roller bearings, Thrust roller bearings. We also supply unique linear bearing, ceramic bearing, plastic bbearings, textile bearing rotor bearing comprehensive, excavator bearing and so on.
Items are thoroughly utilised in machinery, Agricultural pillow block bearing housing insert bearings SBDS 3034 C SBDS 3036 C SBDS 3038 C excavator, hydropower, engineering, railways, vehicles, electric powered energy, textiles, metallurgy, mine, German jubilee Spring Butterfly Manage Fast Launch clips Clamps papermaking, sports products and precision instruments.

Our Services
Aggressive PriceWe a hundred% promise aggressive prices on our substantial quality products. We could provide the wholesale price tag for our customers Swift ResponseOur marketing and advertising team and after-sale services team are 7×24-hour reaction on line.

Types of Ball Bearings

Modern ball bearing configurations have different materials and geometries to meet the demands of different working environments and applications. There are different types of ball bearings: single row deep groove, double-row deep groove, angular contact ball bearing, thrust, and self-aligning. Let us look at the differences between each type and learn why they are important for various purposes. Listed below are some of the most common types of ball bearings.

Miniature bearings

Although miniature ball bearings are a popular choice for small mechanical components, they are not without their challenges. They must be properly lubricated and stored in clean rooms. A strand of hair could ruin a miniature bearing. Fortunately, manufacturers offer lubrication services and a “Clean Room” for customers to store their miniature bearings safely. Read on to learn more about these small bearings and how they can help you.
The size of a miniature ball bearing can vary significantly, but most types of these devices are available in sizes ranging from.040 inch to one eighth of an inch. Whether you need a small ball bearing for a miniature car or a tiny instrument, a miniature bearing can save space while still offering high performance. Many of these bearings are shielded to prevent dirt from entering and leakage of lubricant. They can be flanged or unflanged, and some miniature ball bearings have extended inner rings that are designed for easy plate mounting.
Miniature ball bearings are commonly made from stainless steel or chrome steel. Both metals have their advantages. Stainless steel is the most popular material for ball bearings, which allows for a high load capacity while being quiet. Because stainless steel is relatively inexpensive, many small instrument bearings are made entirely of stainless steel. The difference in price is minimal, as the amount of steel is relatively small. Stainless steel miniature bearings are the smallest and lightest of all types of miniature ball bearings.

Self-aligning ball bearings

bearing
In the simplest terms, self-aligning ball bearings are ball bearings with flex shafts. If you’re looking for a ball bearing with a high degree of precision, you’ll want to choose one with a flex shaft, which means it can adjust to the proper orientation of the bearing’s flex shaft. Ball bearings with flex shafts are also recommended. But, what are these bearings?
Self-aligning ball bearings are made with two rows of balls and a common sphered raceway on the outer ring. As a result, they can accommodate small errors in shaft alignment and mounting. The CZPT brand is especially suitable for high-speed applications requiring greater running accuracy. The self-alignment mechanism is enabled by the fact that the balls are placed in two rows on either side of the sphered raceway in the outer ring. These two rows of balls also promote reduced friction and wear.
Another type of self-aligning ball bearings is a double-row design. They feature a common sphered raceway on the outer ring, a hollow spherical ring, and a cage that rotates relative to it. A self-aligning ball bearing is used in applications where shaft misalignment is a problem, such as conveying equipment. They are also used in simple woodworking machinery and ventilators.

Ceramic ball bearings

Ceramic ball bearings have several advantages over steel or metal bearings. These include increased acceleration capability, reduced friction, improved wear-resistance, and higher speeds. The United States holds the leading position in the global ceramic ball bearings market thanks to a rebounding motor vehicle production and healthy fixed investment environment. In the United States, there are three primary markets for ceramic ball bearings: healthcare, automotive, and aerospace. Here are the main benefits of ceramic ball bearings:
Hybrid ball bearings are also available. Hybrid bearings feature traditional metal rings and silicon nitride (ceramic) balls. Hybrid bearings offer important performance advantages over all-steel bearings, and they are more affordable. However, full ceramic ball bearings have all ceramic parts, and are best suited for machines that require high precision. These types of bearings also resist corrosion and wear.
Compared to steel ball bearings, ceramic balls are lighter than steel. They are also less dense, which means less friction and therefore less heat. Additionally, ceramic balls operate at higher speeds than steel balls, which increases their durability and longevity. But they are still not as strong as steel bearings. And because of their reduced density, they are much cheaper to manufacture. Therefore, they are an excellent choice for many applications. You can expect them to last much longer than steel bearings.

Steel carbon ball bearings

High precision G25 ball bearings are made of the highest grade chrome steel and hot forged from bar stock. Statistical process control and exacting atmospheres help ensure uniform hardness and microstructure. Moreover, these bearings are of the highest quality, with fine surface finish and a tight tolerance. This makes them the most widely used and reliable choice for industrial and automotive applications. However, there are some considerations that should be taken into account before acquiring a steel carbon ball bearing.
Generally, AFBMA grade 200 is the standard hardness specification for this material. AFBMA grade 100 can also be obtained with great difficulty. Despite the high hardness of steel carbon ball bearings, their outer surface is just a thin hardened shell, so a special micro hardness test is needed to evaluate them. In addition to the hardness, steel balls are easily machined and ground. Some manufacturers even offer stainless steel ball bearings and ball sets.
Another factor that makes steel carbon ball bearings so valuable is their precision. They can give precise measurements, which makes them ideal for low and medium-speed applications. Due to their high precision and durability, steel carbon ball bearings can be used in many applications, from conveyor machines to roller skates. However, you should be aware that the material used to produce these bearings is not suitable for applications in which they are exposed to water and gases. Further, they are also noisy and heavy, and must be installed properly in a manufacturing environment.

Stainless steel ball bearings

bearing
Stainless steel ball bearings are made from a high-quality type of stainless steel, 440C, which offers optimal corrosion and abrasion resistance. These bearings are also durable and rust-free, and are suitable for a variety of applications. Among others, stainless steel ball bearings are used in beverage and food processing plants, pharmaceuticals, pulp and paper mills, marine environments, and freezers.
Stainless steel bearings are available in various grades. For example, AISI 440C offers corrosion resistance, while the DD400 is specifically designed for marine applications. Both types of stainless steel are available in different forms, including open, shielded, and sealed. Stainless steel ball bearings can also be custom-made, as BL is known for producing customized bearings. There are also other materials that are available.
AISI type 316 stainless steel balls are ideal for marine applications and food processing. They have excellent resistance to most organic materials and are also used in medical devices and dispenser pumps. They are also strong enough to resist many petroleum products and are widely used in medical equipment and cosmetic applications. In addition, stainless steel balls can be plated to provide an additional layer of protection against chemicals. To understand how they differ, let’s take a look at some common types of stainless steel ball bearings.

Stainless steel

Stainless steel ball bearings can be used in various applications. Besides being corrosion resistant, they also last longer thanks to the Molded-Oil lubrication technology. Stainless steel ball bearings are clean units, which saves time and money in terms of maintenance, replacement, and downtime. But what are the advantages of stainless steel ball bearings? Let us discuss these benefits. Also, we’ll discuss their advantages and disadvantages.
Stainless steel ball bearings offer notable advantages, including corrosion resistance, increased strength, and improved stability under high temperatures. These qualities make them the ideal choice for special circumstances and demanding environments. However, you should be careful when choosing stainless steel bearings. There are several different types of stainless steel. Here’s a brief look at what makes them the best choice. And remember: Stainless steels are also recyclable. In fact, they can be recycled indefinitely.
They’re made from chrome alloy electric furnace steel, which is hardened for optimum service life and strength. They have the highest surface finish and dimensional accuracy. Advanced heat-treating processes increase their strength and anti-cracking abilities. And thanks to their unique materials, they’re corrosion-resistant. As a result, they’re more durable than other types of bearings. And since they’re made with a high-quality steel, you’ll save money in the long run.

Plastic ball bearings

bearing
Plastic ball bearings were developed to meet the specific needs of applications where standard steel bearings would fail. Steel and 440C stainless steel are both susceptible to rusting when exposed to water, making them poor choices for applications involving food processing, swimming pools, and medical equipment. In addition to this, the plastic material is able to dampen vibrations and make the bearing virtually silent. Here’s what makes plastic ball bearings so great for these applications.
Plastic ball bearings are lightweight, corrosion-resistant, and offer a long service life. In addition to their low price, they can be easily cleaned and are incredibly durable. Motion plastics specialist igus has recently expanded its range of xiros polymer grooved ball bearings. These bearings are also FDA-compliant, lubricant-free, electrically insulating, and resistant to both temperature and media.
Plastic bearings are often mounted into other components like wheels, pulleys, and housings. In this way, the inner ring is essentially a profile of the pulley’s profile, and the outer ring is a shaft or fixing clip. The result is seamless integration of the bearing and the surrounding parts, which reduces the overall assembly time and costs. You can also use multiple plastic ball bearings in one application for more options.

China Germany brand needle roller bearings KH-2540PP KH2540PP KH2540-PP     bearing distributorsChina Germany brand needle roller bearings KH-2540PP KH2540PP KH2540-PP     bearing distributors
editor by czh 2023-02-18

China HXHV Bearings K45x50x17 Needle Roller Bearing with Great quality

Bore Dimension: 45 – 45.01 mm
Relevant Industries: Developing Material Shops, Printing Stores, Farms, Garment Shops, Cafe, Promoting Firm, Machinery Repair Shops, Foodstuff & Beverage Stores, Foodstuff Store, Retail, Strength & Mining, Manufacturing Plant, Foods & Beverage Manufacturing unit, Hotels, House Use, Development performs
Variety: Needle
Design Variety: K45x50x17H
Precision Rating: P0 P6 P5 P4 P2
Seals Sort: Open
Quantity of Row: Single row
Materials: GCr15
Sample: Obtainable
Support: OEM Tailored Companies
Dimension (IDxODxWidth): 45x50x17 mm
Fat: .03kg
Reference speed: 9 000 r/min
Restricting velocity: ten 000 r/min
Packaging Details: 1, Common Packing2, HXHV Packing3, Personalized Packing4, Other first Packing
Port: ZheJiang ,HangZhou, HangZhou, HangZhou

Manufacturing unit VR Simply click to go via our factory as if you are listed here. VR HangZhou HXH Bearing CO., LTDWe source CE certification and our business has been verified by SGS Team and Alibaba. We are professional bearing manufacturer given that yr 2005, Cylindrical Roller Bearing N NU 213 NF 213E substantial high quality roller bearing giving OEM service, brand name bearings.Manufacturing facility Value + Wonderful Top quality + Fast Reply + Quick Shipping and deliveryYou should contacct us for the CE files. Merchandise Description Idea: The needle bearing is made of chrome steel substance. Needle roller bearings here is only for exhibit. Please get in touch with us, we will ship you the appropriate photograph and prce that you essential.

Model NumberK45x50x17H
TypeNeedle Bearing
No. of RowSingle Row
Inner Diameter45 mm
Outer Diameter50 mm
Width17 mm
Seal Kind — OpenWithout any seal on the two sides
Standard ContentChrome Steel (GCr15)
Optional MaterialsStainelss steel or Carbon steel
Optional Brand nameOriginal Brand name, Make sure you contact us for photos, price tag and much more particulars
OEM ProviderCustomize bearing’s dimension, brand, packing, etc.
Why Select Us Organization Profile (Click to view)Buyer’s Feedback (Click on to view) 1 Confirmed Supplier on Alibaba since calendar year 2015.2 Manufacturing unit price, Excellent Top quality.3 OEM Services.4 Solution Patent.5 Fast Reply and Wonderful Service. Certification Our certificates incorporate SGS, Patent and CE. Please make contact with us for Distinct documents. Packing & Supply
Packing oneUniversal Packing
Packing 2HXHV Packing
Packing threeCustomized Packing
Packing fourBrand Packing
Organization Profile HangZhou H X H Bearing Co., Ltd. is a professional provider of precise bearings, located in HangZhou, China, with our personal brand name H X H V. We provide O E M service, supplying bearings with buyers personal emblem, size, and packing. Our Primary Goods are Ball Bearings, Roller Bearings and Roller Wheels for doorway and windows. The Ball Bearings consist of the deep groove ball bearing, ceramic ball bearing, skinny segment ball bearing, angular get in touch with ball bearing, 6v 12v 24v RS 550 555 long lasting magnet dc motor for water pump and tiny electrical drill pillow block bearing, thrust ball bearing, self- aligning ball bearing. The roller bearings which includes tapered roller bearing, needle roller bearing, cylindrical roller bearing, thrust roller bearing,spherical roller bearing and other rod conclude bearing, spherical plain bearing. We have exported bearings to worldwide nations around the world including United States, Canada, Mexico, Brazil, Germany, Spain, Poland, Russia, Turkey, Korea, Vietnam and Indonesia. We have several consumers who still left us 5-stars positive comments on Alibaba. HangZhou H X H Bearing Co., Ltd is a reliable and CZPT provider. We insist that Honesty and quality is the standard of the extended- phrase company relationship. We have been the verified gold supplier on Alibaba for 7 a long time until now. S G S certificate and C E certification are equally in legitimate. The transaction worth of our trade assurance orders always keeps top kinds in this filed. We are seeking ahead to function with you. And we is not going to allow you down! FAQ Q: How to get the most current price tag ?A: Make sure you deliver inquiry via Alibaba immediately. We will reply right away. Q: What’s the MOQ ?A: It is US $a thousand per buy. Or you can buy our RTS products through alibaba.com immediately.Q: What’s the shipping time ?A: The direct-time is about 3-5 times, and we ship merchandise by air or by sea depends on your order quantity.

Bushing Application, Type and Compression Capability

Bushings are cylindrical bushings used in machinery. It prevents wear of moving parts and is often used as an enclosure. Bushings are also known as plain bearings or sleeve bearings. You may be wondering what these parts do and how they work, but this article aims to answer all your questions. We’ll cover bushing applications, types and compression capabilities so you can choose the right one for your needs.
bushing

application

A bushing is a mechanical component that plays an important role in many different fields. In addition to being very practical, it helps reduce noise, vibration, wear and provides anti-corrosion properties. These properties help mechanical equipment in various ways, including making it easier to maintain and reducing its overall structure. The functionality of an enclosure depends on its purpose and environment. This article will discuss some of the most common applications of casing.
For example, in an aircraft, the bushing assembly 16 may be used for the bulkhead isolator 40 . The bushing assembly 16 provides the interfaces and paths required for current flow. In this manner, the sleeve assembly provides a secure, reliable connection between two objects with different electrical charges. They also prevent sparking by increasing the electrical conductivity of the component and reducing its resistivity, thereby minimizing the chance of spark formation.
Another common application for bushings is as a support shaft. Unlike bearings, bushings operate by sliding between two moving surfaces. As a result, they reduce friction and handling stress, reducing overall maintenance costs. Typically, the bushing is made of brass or bronze. The benefits of bushings are similar to those of bearings. They help extend the life of rotating machines by reducing frictional energy loss and wear.
In addition to identifying growth opportunities and minimizing risks, the Bushing Anti-Vibration Mounts Market report provides insights into the dynamics of the industry and its key players. The report covers global market size, applications, growth prospects, challenges and regional forecasts. The detailed section on Bushing Anti-Vibration Mounts industry provides insights on demand and supply along with competitive analysis at regional and country level.

type

There are several types of bushings. Among them, the SF6 insulating sleeve has the simplest structure and is based on composite hollow insulators. It also has several metal shielding cylinders for regulating the electric field within the enclosure and another for grounding the metal shield. In addition to being lightweight, this sleeve is also very durable, but the diameter of its shield electrode is very large, which means special installation and handling procedures are required.
Linear bushings are usually pressed into the bore of the shaft and provide support as the shaft moves in/out. Non-press-fit bushings are held in place by snap rings or pins. For certain applications, engineers often choose bushings over bearings and vice versa. That’s why. Below are some common bushing types. If you need to buy, make sure you know how to tell them apart.
OIP bushings are used for oil-filled cable boxes, and oil-to-oil bushings are used for EHV power transformers. The main components of the OIP enclosure are shown in Figure 7a. If you are considering this type of bushing for your specific application, you need to make sure you understand your specific requirements. You can also consult your local engineering department for more information.
All types of bushings should be tested for IR and capacitance. The test tap should be securely attached to the bushing flange. If damaged bushings are found, replace them immediately. Be sure to keep complete records of the enclosure for routine maintenance and any IR testing. Also, be sure to pay attention to tan d and thermal vision measurements.
bushing

Compressive ability

There are several things to consider when choosing an enclosure. First, the material. There are two main types of bushings: those made of filled Teflon and those made of polyester resin. The former has the highest compressive strength, while the latter has a lower compressive capacity. If you need small amounts, glass-filled nylon bushings are the most common and best option. Glass-filled nylon is an economical material with a compressive strength of 36,000 lbs.
Second, the material used for the enclosure must be able to withstand the load. For example, bronze bushings can cause metal shavings to fall into the papermaking process. CG materials can withstand very high levels of moisture, which can damage bushings that require lubrication. Additionally, these materials can operate for extended periods of time without lubrication. This is particularly advantageous in the paper industry, since the casing operates in a humid environment.
In addition to the material and its composition, other characteristics of the enclosure must also be considered, including its operating temperature. Although frictional heat from moving loads and the temperature of the bushing itself can affect the performance of the bushing, these factors determine its service life. For high temperature applications, the PV of the enclosure should be kept low. On the other hand, plastic bushings are generally less heat resistant than metal bushings. In addition, plastic sleeves have a high rate of thermal expansion. To avoid this, size control is also important.
Low pressure bushings have different requirements. An 800 MVA installation requires a low voltage bushing rated at 14 000 A. The palm assembly of the transformer also features a large central copper cylinder for electrical current. The bushing must withstand this amount of current and must maintain an even distribution of current in the transformer tank. If there is a leak, the bushing must be able to resist the leak so as not to damage the transformer.

cost

The cost of new control arm bushings varies widely. Some parts are cheaper than others, and a new part is only $200. However, if you replace the four control bushings in your car, the cost can exceed $1,200. The cost breakdown for each section is listed below. If you plan to replace all four, the cost of each bushing may range from $200 to $500.
The control arm bushing bears the brunt of the forces generated by the tire and is parallel to the direction of the force. However, over time, these components wear out and need to be replaced. Replacing one control arm bushing costs between $300 and $1,200. However, the cost of replacing each arm bushing depends on your car model and driving habits. The control arm bushings should last about 100,000 miles before needing replacement.
The repair process for control arm bushings is time consuming and expensive. Also, they may need to remove the heat shield or bracket. In either case, the procedure is simple. Stabilizer bar brackets are usually attached with one or two mounting bolts. They can also be secured with nuts or threaded holes. All you need is a wrench to remove them.
The control arm bushings are made of two metal cylinders and a thick rubber bushing. These parts can deteriorate from potholes, off-roading or accidents. Because they are made of rubber, the parts are more expensive than new. Buying used ones can save you money because you don’t need to install them yourself. However, if you do plan on fixing a luxury car yourself, be sure to find one that has a warranty and warranty.
bushing

maintain

To prevent your vehicle from overheating and leaking oil, a properly functioning bushing must be used. If the oil level is too low, you will need to check the mounting bolts to make sure they are properly tightened. Check gasket to ensure proper compression is applied, replace bushing if necessary. You should notify your vehicle manufacturer if your vehicle is immersed in oil. Whenever an oil leak occurs, it is very important to replace the oil-filled bushing.
Another important aspect of bushing maintenance is the detection and correction of partial discharges. Partial discharge is caused by current entering the bushing. Partial discharge can cause tree-like structures, cracks and carbonization in the discharge channel, which can eventually damage the casing. Early detection of these processes is critical to ensuring that your vehicle’s bushings are properly maintained. Identifying and repairing partial discharges is critical to ensuring optimal operation, regardless of the type of pump or motor.
To diagnose casing condition, perform several tests. You can use tan d measurement, which is a powerful tool for detecting the ingress of water and moisture. You can also use power factor measurements to detect localized defects and aging effects. You can also check the oil level by performing an infrared check. After completing these tests, you will be able to determine if there is enough oil in the casing.
If the oil level in the transformer is too low, water and air may leak into the transformer. To avoid this problem, be sure to check the MOG and transformer oil levels. If the silicone is pink, replace it. You should also check the function of the oil pump, fan and control circuits annually. Check the physical condition of the pump and fan and whether they need to be replaced. Clean the transformer bushing with a soft cotton cloth and inspect for cracks.

China HXHV Bearings K45x50x17 Needle Roller Bearing     with Great qualityChina HXHV Bearings K45x50x17 Needle Roller Bearing     with Great quality
editor by czh 2023-02-17