Tag Archives: cam follower bearing

China supplier 9180217 Cam Follower Bearing for Offset Printing Machine

Product Description

Welcome to HangZhou XIHU (WEST LAKE) DIS. FLIGHT SEIKO MACHINERY CO.,LTD !
We offer a wide variety of precision machining capabilities including high quality precision machined parts,
Mechanical assemblies,and cutom fabrication for automobile,textile machinery,construction machinery etc.
Our manufacturing and process capabilities are ISO9000 Certified.
 

Stud type track rollers is composed of a stud used as the tray of a group of rollers and a thick wall outer ring. The shoulder of the stud and the surface retaining ring on the stud form the guiding faces on the 2 sides of the outer ring. When the curve rollers are running on the plain tray or cam wheel, the inner stress on the rollers will increase due to the deformation of the outer ring. Therefore the rated load should be selected as curve roller column in this operational case.

 

Characteristic of Stud type track rollers

Model

External dimensions

 

D

d

C

B

mm

9185718

35

30

23

62

9185717

65

30

23

41.5

YSN-10A

100

 

48

80

YSN-11A 100   48 68
YSN-03 62 25   16
YSN-16 42 16 9.9 10
YSN-23 120 36   49

Custom size requirement are also available

 

Our advantage:
1.The original 100% factory, more than 10 years’ production experience
2.Produce and process products according to your drawings and requirement.
3.All kinds of surface treatment available,such as anodizing,power coating,painting,polishing and etc.
4.Our professional R&D and QC team can strictily control the product quality to meet your requirement.
5.Our products are of high quality at cheap price,and delivered on time.
 

Manufacturing strength & Vehicle processing line

1.Professional operators

2.Adopting advanced CNC machine tools in Japan

3.Totally enclosed production workshop

4.Experienced managers

5.Digital control production line

6.Advanced level of technology

 

 

Production Detection

1.Complete testing facilities

2.Perfect measurement methods

3.Perfect production detection methods

4.Strong QC team,conduct comprehensive quality control
 

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Rolling Body: Stud Type Track Rollers
The Number of Rows: Stud Type Track Rollers
Outer Dimension: Customized
Material: Customized
Spherical: Stud Type Track Rollers
Load Direction: Stud Type Track Rollers
Samples:
US$ 0/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

cam roller

How do cam rollers contribute to the adaptability and versatility of tracking systems in various settings?

Cam rollers play a significant role in enhancing the adaptability and versatility of tracking systems across various settings. Their design and functionality enable them to meet the diverse requirements of different applications. Here’s a detailed explanation of how cam rollers contribute to the adaptability and versatility of tracking systems:

  • Multiple Track Configurations: Cam rollers can be utilized in various track configurations, such as linear tracks, curved tracks, or complex multi-axis tracks. This flexibility allows tracking systems to adapt to different motion patterns and trajectories required by different applications. Whether it’s a straight-line motion, circular path, or customized multi-axis motion, cam rollers can be configured to accommodate a wide range of tracking requirements.
  • Adjustable Cam Profiles: The design of cam rollers allows for adjustable cam profiles. Cam profiles determine the motion characteristics of the tracking system, including acceleration, deceleration, and dwell periods. By modifying the cam profiles, cam rollers can be customized to suit specific application needs. This adjustability enhances the adaptability of tracking systems, enabling them to handle different speed profiles, motion sequences, or tracking patterns.
  • Modular and Scalable Design: Cam rollers are often designed with a modular and scalable approach, allowing for easy integration into different systems and the ability to scale up or down based on application requirements. They can be combined with other components, such as motors, gearboxes, or sensors, to create a complete tracking system. This modular design facilitates the adaptability and versatility of tracking systems, enabling customization and quick reconfiguration as per changing needs.
  • Wide Range of Load Capacity: Cam rollers are available in various sizes and configurations, offering a wide range of load capacities. From lightweight applications to heavy-duty industrial settings, cam rollers can handle different loads and forces. This versatility allows tracking systems to adapt to diverse payload requirements, making them suitable for applications ranging from small-scale automation to large-scale material handling.
  • Compatibility with Different Environments: Cam rollers are designed to operate in various environmental conditions. They can withstand factors like temperature variations, dust, moisture, and contaminants commonly found in industrial or outdoor settings. This compatibility with different environments enhances the adaptability of tracking systems, enabling their deployment in diverse industries such as manufacturing, logistics, automotive, and aerospace.
  • Integration with Control Systems: Cam rollers can be seamlessly integrated with electronic or computer-controlled components, such as sensors, actuators, or programmable logic controllers (PLCs). This integration allows for precise control, synchronization, and automation of tracking systems. By incorporating control systems, cam rollers can adapt to dynamic operating conditions, respond to real-time feedback, and enable advanced tracking functionalities.
  • Compatibility with Various Object Shapes and Sizes: Cam rollers are designed to accommodate a wide range of object shapes, sizes, and materials. They can track objects of different geometries, from flat panels to irregularly shaped components. This compatibility with various object characteristics enhances the versatility of tracking systems, enabling them to handle diverse workpieces, products, or materials.

The adaptability and versatility of tracking systems are significantly enhanced by the use of cam rollers. Their ability to work with different track configurations, adjust cam profiles, modular design, load capacity, environmental compatibility, integration with control systems, and compatibility with various object shapes and sizes makes them a valuable component in a wide range of applications, providing adaptability, flexibility, and versatility to tracking systems in diverse settings.

cam roller

What advantages do cam rollers offer compared to other tracking components?

Cam rollers offer several advantages compared to other tracking components, making them a preferred choice in many applications. Their unique design and features provide distinct benefits that contribute to improved performance, reliability, and efficiency. Here’s a detailed explanation of the advantages that cam rollers offer compared to other tracking components:

  • Precision Tracking: Cam rollers are specifically designed to follow the profile of a cam or track with high precision. The cam profile following capability ensures accurate tracking along the desired path, allowing for precise positioning and controlled motion. Other tracking components may not provide the same level of precision, leading to deviations or inaccuracies in the motion system.
  • Rolling Motion: Cam rollers utilize rolling motion, where the rolling elements rotate instead of sliding or rubbing against the track. This rolling action reduces friction, resulting in smoother operation, improved energy efficiency, and reduced wear on both the cam roller and the track. In contrast, components that rely on sliding or rubbing contact may experience higher friction, leading to increased wear and decreased efficiency.
  • Load Distribution: Cam rollers distribute the applied load evenly among the rolling elements. This load distribution capability minimizes stress concentrations and ensures that no single point bears an excessive load. As a result, cam rollers can handle higher loads while maintaining stability and longevity. Other tracking components may experience localized stress concentrations, leading to premature wear or failure under heavy loads.
  • High Rigidity: Cam rollers are designed to provide high rigidity, allowing for accurate positioning and controlled motion. The materials and construction of cam rollers ensure minimal flexing or deformation during operation, maintaining tight tolerances and preventing unwanted deviations. In comparison, some other tracking components may exhibit lower rigidity, leading to less precise motion and increased susceptibility to external forces.
  • Wide Range of Configurations: Cam rollers are available in various configurations, such as stud-type cam rollers and yoke-type cam rollers, to accommodate different attachment and mounting requirements. This versatility makes them suitable for a wide range of applications and machinery configurations. In contrast, some other tracking components may have limited options or may not offer the same level of adaptability to diverse mounting or attachment needs.
  • Cost-Effectiveness: Cam rollers are generally cost-effective solutions for motion tracking. They offer a good balance between performance and cost, making them a preferred choice in many applications. Their durability, reliability, and long service life contribute to overall cost savings by minimizing maintenance, replacement, and downtime expenses. Other tracking components with similar performance characteristics may be more expensive or may not provide the same level of reliability.

By offering precision tracking, rolling motion, load distribution, high rigidity, versatile configurations, and cost-effectiveness, cam rollers stand out as advantageous tracking components in comparison to other alternatives. These advantages make cam rollers suitable for a wide range of applications, including machinery, conveyors, material handling systems, and automation equipment.

In summary, cam rollers offer distinct advantages compared to other tracking components. Their precision tracking, rolling motion, load distribution, high rigidity, versatile configurations, and cost-effectiveness contribute to improved performance, reliability, and efficiency in motion systems.

cam roller

What is a cam roller, and how is it utilized in mechanical systems?

A cam roller, also known as a cam follower or track roller, is a specialized type of roller bearing used in mechanical systems. It is designed to follow the surface profile of a cam or track and transmit motion or force between the cam and a moving component. Here’s a detailed explanation of what a cam roller is and how it is utilized in mechanical systems:

A cam roller consists of a cylindrical roller, needle roller, or ball bearing that is mounted in a stud or yoke. The stud or yoke provides a means of attachment to the moving component of the mechanical system. The roller or bearing element is housed within a thick-walled outer ring, which serves as a guide and support for the roller. The outer ring has a profile that matches the shape of the cam or track over which the cam roller operates.

The primary function of a cam roller is to convert rotary motion into linear motion or vice versa. As the cam or track rotates, the cam roller follows the profile, causing the roller to move along the track. This motion can be utilized in various ways depending on the specific application. Here are some common uses of cam rollers in mechanical systems:

  • Motion Transmission: Cam rollers are often used to transmit motion from a rotating cam to a reciprocating or oscillating component. For example, in engines, cam followers are used to transfer the motion of the camshaft to the valves, opening and closing them at the appropriate timing.
  • Guiding and Support: Cam rollers can also provide guidance and support to moving components in a mechanical system. They help maintain proper alignment and prevent lateral movement or deflection. This is particularly useful in applications such as conveyor systems, where cam rollers guide the movement of belts or chains.
  • Load Bearing: Cam rollers are designed to withstand high loads and provide support to heavy-duty applications. They are often used in machinery and equipment where there is a need for reliable load-bearing capabilities. Examples include construction machinery, material handling equipment, and industrial automation systems.
  • Compensating for Misalignment: In some applications, cam rollers are utilized to compensate for misalignment between components. The rolling motion of the cam follower allows it to adjust and accommodate slight deviations in the cam or track profile, ensuring smooth operation even in imperfect conditions.

The choice of cam roller design, size, and material depends on the specific requirements of the application. Factors such as load capacity, speed, operating conditions, and precision requirements are taken into consideration when selecting the appropriate cam roller. Regular maintenance, including lubrication and inspection of the cam roller, is important to ensure its proper functioning and longevity in the mechanical system.

In summary, a cam roller is a specialized type of roller bearing used in mechanical systems to transmit motion, provide guidance and support, bear loads, and compensate for misalignment. Its ability to follow the profile of a cam or track allows for efficient conversion of rotary motion to linear motion or vice versa. Cam rollers find application in a wide range of industries and play a crucial role in ensuring the smooth and reliable operation of mechanical systems.

China supplier 9180217 Cam Follower Bearing for Offset Printing Machine  China supplier 9180217 Cam Follower Bearing for Offset Printing Machine
editor by CX 2024-04-15

China Custom CF-1 1/2-B Stud Type Track Rollers Cam Follower Bearing For Machine Tools

Product Description

CF-1 1/2-B Stud Type Track Rollers Cam Follower Bearing For Machine Tools

                                                             Application

                        Metals                                                      Mining, Mineral Processing and Cement   
   
                        Railways                                                  Industrial Applications.

                        Material Handling                                     Agriculture

                        Construction                                             Machine Tools
                       
                         Auto Parts                                                Power Generators 

Cam Followers Stud-Type Track Rollers are designed to run on all types of tracks and to be used in cam drives, conveyor systems, etc.

They are based on either needle or cylindrical roller bearings. Instead of an inner ring, they have a threaded CHINAMFG stud (pin)

CF  B serial cam follower bearing Specification

Product Name CFVBR CFVBUUR  Stud Type Track Rollers 
Precision Rating P6, P0, P5, P4, P2
Material Bearing Steel (GCr15)
Clearance C1 C2 C3 
Vibration & Noisy Z1, Z2, Z3 V1, V2, V3
 Features With Axial Guidance, Axial Plain Washers on Both Sides,full complement needle roller set
CFVBR Features  Shiled Type
CFVBUUR Features Sealed Type
Application Machine Tools, Auto Parts, Power Generators,and other Industrial Applications
Certification ISO 9001: 2008
Packing 1. Neutral Packing Bearing 2. Industrial Packing 3. Commercial Packing Bearing 4. Customize
Delivery Time 30 – 45 Days After The Order is Confirmed
Shippment 1. By Sea 2. By Air 3. By Express

 

CF V B UU R
Standard Type Full Complement Type Hexagon Socket Sealed Type Crowned Outer Ring

CF  B serial cam follower bearing Specification

Bearing No. Dimensions (mm) Basic Load Rating(KN) Limited
Speed
Mass
Hexagon Hole Sealed Type D d C B B1 B2 G G1 C Co rpm kg
CF-1/2-N-B CF-1/2-N-SB 12.70 4.83 8.73 22.23 12.70 10-32 6.35 3.44 3.84 12000 0.009
CF-1/2-B CF-1/2-SB 12.70 4.83 9.53 26.19 15.88 10-32 6.35 3.84 4.40 12000 0.571
CF-9/16-B CF-9/16-SB 14.29 4.83 9.53 26.19 15.88 10-32 6.35 4.30 5.30 10000 0.015
CF-5/8-N-B CF-5/8-N-SB 15.88 6.35 10.32 26.99 15.88 1/4-28 7.94 4.72 6.24 8800 0.019
CF-5/8-B CF-5/8-SB 15.88 6.35 11.11 30.96 19.05 1/4-28 7.94 5.20 7.00 8800 0.571
CF-11/16-B CF-11/16-SB 17.46 6.35 11.11 30.96 19.05 1/4-38 7.94 6.50 8.50 8000 0.030
CF-3/4-B CF-3/4-SB 19.05 9.53 12.70 35.72 22.23 6.35 3/8-24 9.53 7.12 10.00 6400 0.037
CF-7/8-B CF-7/8-SB 22.23 9.53 12.70 35.72 22.23 6.35 3/8-24 9.53 7.12 10.00 6400 0.048
CF-1-B CF-1-SB 25.40 11.11 15.88 42.07 25.40 6.35 7/16-20 12.70 10.64 18.50 5200 0.076
CF-1 1/8-B CF-1 1/8-SB 28.58 11.11 15.88 42.07 25.40 6.35 7/16-20 12.70 10.64 18.50 5200 0.087
CF-1 1/4-B CF-1 1/4-SB 31.75 12.70 19.05 51.59 31.75 7.94 1/2-20 15.88 19.20 25.90 4400 0.140
CF-1 3/8-B CF-1 3/8-SB 34.93 12.70 19.05 51.59 31.75 7.94 1/2-20 15.88 19.20 25.90 4400 0.163
CF-1 1/2-B CF-1 1/2-SB 38.10 15.88 22.23 61.12 38.10 9.53 5/8-18 19.05 23.00 32.70 3600 0.235
CF-1 5/8-B CF-1 5/8-SB 41.28 15.88 22.23 61.12 38.10 9.53 5/8-18 19.05 23.00 32.70 3600 0.270
CF-1 3/4-B CF-1 3/4-SB 44.45 19.05 25.40 70.64 44.45 11.11 3/4-16 22.23 28.70 45.40 3200 0.379
CF-1 7/8-B CF-1 7/8-SB 47.63 19.05 25.40 70.64 44.45 11.11 3/4-16 22.23 28.70 45.40 3200 0.426
CF-2-B CF-2-SB 50.80 22.23 31.75 83.34 50.80 12.70 7/8-14 25.40 37.30 65.80 2800 0.640
CF-2 1/4-B CF-2 1/4-SB 57.15 22.23 31.75 83.34 50.80 12.70 7/8-14 25.40 37.30 65.80 2800 0.774
CF-2 1/2-B CF-2 1/2-SB 63.50 25.40 38.10 96.04 57.15 14.29 1-14 28.58 54.00 102.30   1.126
CF-2 3/4-B CF-2 3/4-SB 69.85 25.40 38.10 96.04 57.15 14.29 1-14 28.58 54.00 102.30   1.316
CF-3-B CF-3-SB 76.20 31.75 44.45 108.70 63.50 15.88 1 1/4-12 31.75 72.30 155.00   1.905
CF-3 1/4-B CF-3 1/4-SB 82.55 31.75 44.45 108.70 63.50 15.88 1 1/4-12 31.75 72.30 155.00   2.170
CF-3 1/2-B CF-3 1/2-SB 88.90 34.93 50.80 121.40 69.85 17.46 1 3/8-12 34.93 104.80 196.70   2.878
CF-4-B CF-4-SB 101.60 38.10 57.15 146.80 88.90 19.05 1 1/2-12 38.10 138.00 278.00   4.253
  CF-5-SB 127.00 50.80 69.85 200.00 128.60 22.23 2-12 65.07 214.00 422.00    
  CF-6-SB 152.40 63.50 82.55 236.50 152.40 25.40 2 1/2-12 76.20 276.00 500.00    
  CF-7-SB 177.80 76.20 95.25 292.00 195.25 31.75 3-12 104.80 347.00 665.00    
  CF-8-SB 203.20 82.55 107.95 327.00 215.90 3 1/4-4 108.15 424.00 896.00    
  CF-9-SB 228.60 95.25 120.65 365.10 241.30 3 1/2-4 120.65 521.00 1140.00    
  CF-10-SB 254.00 107.95 133.35 390.50 254.00 3 1/2-4 120.65 605.00 1340.00    

                                                     About Us

HENGLI Machinery Company is a well-established Chinese bearing supplier. We design, manufacture and wholesale bearings. 
Our specialized manufacturer of Spherical Roller Bearing Cylindrical Roller Bearing, XIHU (WEST LAKE) DIS. Rolling Bearing Co., Ltd was
established in 1970 and is accredited by the Chinese Ministry of Machine Building. 

We invested in 2 additional specialized bearing factories, which allow us to provide our clients with top of the line products 
such as Needle Roller Bearings, Cam Follower Bearings, Thrust Bearings, Spherical Plain Bearings, Rod Ends Bearings,
Ball Joint Bearings,Tapered Roller Bearings, Wheel Hub Bearings and Non-Standard Bearings. 

FAQ
Q1 – What is our advantages? 

A – Manufacturer – Do it only with the Best; 

-Your Choice make different. 

Q2 – Our Products

A – Spherical Roller Bearing, Cylindrical Roller Bearing, Needle Roller Bearing, Cam Followers, Thrust Bearing

– Spherical Plain Bearing, Rod End, Ball Joint, Wheel Hub, Tapered Roller Bearing

Q3 – Process of our production

A – Heat Treatment – Grinding – Parts Inspection – Assembly – Final Inspection – Packing

Q4 – How to customize bearing(non-standard) from your company? 

A -We offer OEM, Customized(Non-standard) service and you need to provide drawing and detailed Technical Data. 

Q5 – What should I care before installation? 

A – Normally, the preservative with which new bearings are coated before leaving the factory does not need to be

Removed; It is only necessary to wipe off the outside cylin­drical surface and bore, if the grease is not compatible

With the preservative, it is necessary to wash and carefully dry the bearing. 

-Bearings should be installed in a dry, dust-free room away from metal working or other machines producing

Swarf and dust. 

Q6 – How to stock and maintenance my bearings right? 

A – Do not store bearings directly on concrete floors, where water can condense and collect on the bearing; 

-Store the bearings on a pallet or shelf, in an area where the bearings will not be subjected to high humidity

Or sudden and severe temperature changes that may result in condensation forming; 

-Always put oiled paper or, if not available, plastic sheets between rollers and cup races of tapered roller bearings. 

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Rolling Body: Roller Bearings
The Number of Rows: Single
Material: Bearing Steel
Spherical: Non-Aligning Bearings
Load Direction: Radial Bearing
Separated: Unseparated
Samples:
US$ 1/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

cam roller

What safety considerations should be taken into account when using cam rollers in industrial settings?

When using cam rollers in industrial settings, several safety considerations should be taken into account to ensure the well-being of personnel, prevent accidents, and maintain a safe working environment. Here are some important safety considerations when using cam rollers:

  • Proper Guarding: Cam rollers should be properly guarded to prevent accidental contact with moving parts. Depending on the specific application and the level of exposure, appropriate guarding measures such as barriers, enclosures, or safety covers should be in place to protect operators and other personnel from potential hazards associated with rotating cam rollers.
  • Lockout/Tagout Procedures: Before performing maintenance or repair tasks on cam rollers or associated equipment, appropriate lockout/tagout procedures should be followed. Lockout/tagout procedures help ensure that energy sources are isolated, machinery is de-energized, and appropriate warning devices are in place to prevent unintentional startup or release of stored energy, minimizing the risk of injury.
  • Training and Awareness: Adequate training should be provided to operators and maintenance personnel working with cam rollers. They should be trained on safe operating procedures, potential hazards, emergency protocols, and proper use of personal protective equipment (PPE). Regular refresher training sessions and ongoing awareness programs can help reinforce safe practices and promote a safety-conscious culture.
  • Risk Assessment: Conducting a thorough risk assessment specific to the application and environment is crucial. Identify potential hazards associated with cam rollers, such as pinch points, entanglement risks, or flying debris. Assess the severity of each hazard and implement appropriate control measures to mitigate the risks, such as installing physical barriers, implementing safety interlocks, or providing warning signage.
  • Maintenance and Inspections: Regular maintenance and inspections of cam rollers are essential for identifying and addressing any issues that may compromise safety. Inspect the rollers, bearings, tracks, and associated components for signs of wear, damage, or misalignment. Follow manufacturer recommendations for maintenance intervals, lubrication schedules, and component replacements to ensure the safe and reliable operation of cam rollers.
  • Proper Load Handling: Ensure that cam rollers are not subjected to loads or forces beyond their specified capacity. Overloading cam rollers can lead to premature wear, component failure, or dangerous conditions. Consider the weight, size, and distribution of the load being tracked and ensure that the cam rollers and associated components are designed to handle the applied loads safely.
  • Proper Installation and Alignment: Follow proper installation procedures and ensure accurate alignment of cam rollers. Improper installation or misalignment can result in unexpected movements, excessive friction, or component failures, posing safety risks. Adhere to manufacturer guidelines and recommended alignment procedures to ensure safe and reliable operation.
  • PPE Usage: Personal protective equipment (PPE) should be provided and used appropriately by personnel working with or in the vicinity of cam rollers. Depending on the specific hazards involved, PPE such as safety glasses, gloves, hearing protection, or safety shoes may be required to mitigate the risk of injuries due to flying debris, contact with moving parts, noise exposure, or other potential hazards.

It is important to consult relevant safety regulations, industry standards, and guidelines specific to the application and location to ensure full compliance with safety requirements when using cam rollers in industrial settings. Regular safety audits, hazard assessments, and open communication with personnel can help identify and address potential safety concerns, creating a safer working environment for everyone involved.

cam roller

Can cam rollers be customized for specific industries or machinery configurations?

Yes, cam rollers can be customized to meet the specific requirements of different industries or machinery configurations. The versatility and adaptability of cam rollers make them suitable for a wide range of applications. Customization allows for the optimization of cam rollers to match the unique needs of various industries and machinery configurations. Here’s a detailed explanation of how cam rollers can be customized:

  • Size and Dimensions: Cam rollers can be customized in terms of size and dimensions to suit specific machinery configurations. The outer diameter, inner diameter, width, and overall dimensions of the cam roller can be adjusted to fit within the available space and align with the requirements of the machinery or system.
  • Load Capacity: Customization of cam rollers can involve enhancing the load-carrying capacity to meet the demands of specific industries or heavy-duty applications. By utilizing different materials, heat treatments, or bearing arrangements, cam rollers can be designed to withstand higher radial and axial loads, ensuring reliable performance under challenging operating conditions.
  • Specialized Coatings and Materials: Certain industries or environments may require cam rollers with specialized coatings or materials to withstand corrosive or abrasive conditions. Customization can involve the application of coatings, such as corrosion-resistant coatings or low-friction coatings, to enhance the durability and performance of the cam rollers in specific operating environments.
  • Sealing Options: Cam rollers can be customized with various sealing options to provide protection against contaminants, dust, moisture, or other environmental factors. Custom sealing arrangements, such as rubber seals or labyrinth seals, can be incorporated into the design to ensure the longevity and reliability of the cam rollers in specific industries or applications.
  • Attachment and Mounting: Customization of cam rollers can include modifications to the attachment and mounting options. Different industries or machinery configurations may require specific attachment methods or mounting configurations. Cam rollers can be customized with different stud types, yoke configurations, or eccentric collar options to ensure easy and secure attachment to the moving parts of the machinery or system.
  • Specialized Performance Features: Depending on the industry or application, cam rollers may need specialized performance features. Customization can involve incorporating features such as integrated lubrication systems, temperature sensors, or shock-absorbing elements to enhance the performance, reliability, or monitoring capabilities of the cam rollers in specific industries or machinery configurations.

By collaborating with manufacturers or suppliers, industries can work to customize cam rollers to meet their specific requirements. Customization may involve engineering analysis, design modifications, and material selection to ensure the optimal performance and compatibility of the cam rollers with the targeted industries or machinery configurations.

In summary, cam rollers can be customized for specific industries or machinery configurations. Customization options include adjusting size and dimensions, enhancing load capacity, utilizing specialized coatings and materials, incorporating sealing options, modifying attachment and mounting methods, and adding specialized performance features. By tailoring cam rollers to specific industry or machinery needs, customization ensures optimal performance, longevity, and compatibility with the targeted applications.

cam roller

Can you explain the primary functions and roles of cam rollers in various applications?

Cam rollers, also known as cam followers or track rollers, serve a variety of functions and play crucial roles in various applications across different industries. These specialized roller bearings are designed to follow the surface profile of a cam or track, enabling them to transmit motion, provide guidance, support, and handle loads. Here’s a detailed explanation of the primary functions and roles of cam rollers in various applications:

  • Motion Transmission: One of the primary functions of cam rollers is to transmit motion from a rotating cam to a reciprocating or oscillating component. They are commonly used in applications such as engines, where they transfer the motion of the camshaft to the valves, controlling the opening and closing of the valves at the appropriate timing. Cam rollers ensure precise and reliable motion transmission in these systems.
  • Guidance and Support: Cam rollers are frequently utilized to provide guidance and support to moving components in mechanical systems. They help maintain proper alignment and prevent lateral movement or deflection. In conveyor systems, for example, cam rollers guide the movement of belts or chains, ensuring smooth and controlled operation.
  • Load Bearing: Cam rollers are designed to bear high loads and provide support in heavy-duty applications. They are commonly found in machinery and equipment where there is a need for reliable load-bearing capabilities. Construction machinery, material handling equipment, and industrial automation systems often rely on cam rollers to handle substantial loads and ensure stable and efficient operation.
  • Compensating for Misalignment: In some applications, cam rollers are employed to compensate for misalignment between components. The rolling motion of the cam follower allows it to adjust and accommodate slight deviations in the cam or track profile. This feature ensures smooth operation even when there are minor misalignments, improving the overall performance and reliability of the system.
  • Application-Specific Functions: Cam rollers can also serve application-specific functions based on the requirements of a particular system. For example, in printing and packaging machinery, cam rollers may be used to control the tension and guide the movement of printing substrates or packaging materials. In textile machinery, cam rollers may play a role in controlling the feeding and positioning of fabrics. The versatility of cam rollers allows them to be tailored to the specific needs of diverse applications.

The choice of cam roller design, size, and material depends on the specific demands of the application. Factors such as load capacity, speed, operating conditions, precision requirements, and environmental factors are taken into consideration when selecting the appropriate cam roller. Regular maintenance, including lubrication and inspection, is vital to ensure optimal performance and longevity of cam rollers in various applications.

In summary, cam rollers fulfill essential functions and play significant roles in a wide range of applications. They enable motion transmission, provide guidance and support, bear heavy loads, compensate for misalignment, and serve application-specific functions. Cam rollers contribute to the efficiency, reliability, and smooth operation of mechanical systems across diverse industries.

China Custom CF-1 1/2-B Stud Type Track Rollers Cam Follower Bearing For Machine Tools  China Custom CF-1 1/2-B Stud Type Track Rollers Cam Follower Bearing For Machine Tools
editor by CX 2024-04-13

China Professional Track Rollers Kr35 CF-5/8 Cam Follower Needle Bearing

Product Description

Essential details

Bore Size:5 – 24 mm

Applicable Industries:Building Material Shops, Manufacturing Plant, Machinery Repair Shops, Home Use, Construction works , Energy & Mining

Type:Needle, Stud Type

Brand Name:OEM

Model Number:KR35

Precision Rating:P0 P6 P5 P4 P2

Seals Type: Open

Number of Row:Single row

Place of Origin:HangZhou, China

Product Name:Yoke Type Track Rollers Needle Bearing

Material:Chrome Steel Needle Bearing

Name:Cam Follower

Packaging:Opp Bag/Box

Sample:Available

Item:Cam Follower Bearing

Clearance Cam Follower:C0, C2, C3

Lifetime: 20000

warranty: 2years

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Cage: Multiple
Rows Number: Multiple
Load Direction: Radial Bearing
Style: Without Inner Ring, With Inner Ring
Material: Bearing Steel
Type: Open
Samples:
US$ 1/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

cam roller

What safety considerations should be taken into account when using cam rollers in industrial settings?

When using cam rollers in industrial settings, several safety considerations should be taken into account to ensure the well-being of personnel, prevent accidents, and maintain a safe working environment. Here are some important safety considerations when using cam rollers:

  • Proper Guarding: Cam rollers should be properly guarded to prevent accidental contact with moving parts. Depending on the specific application and the level of exposure, appropriate guarding measures such as barriers, enclosures, or safety covers should be in place to protect operators and other personnel from potential hazards associated with rotating cam rollers.
  • Lockout/Tagout Procedures: Before performing maintenance or repair tasks on cam rollers or associated equipment, appropriate lockout/tagout procedures should be followed. Lockout/tagout procedures help ensure that energy sources are isolated, machinery is de-energized, and appropriate warning devices are in place to prevent unintentional startup or release of stored energy, minimizing the risk of injury.
  • Training and Awareness: Adequate training should be provided to operators and maintenance personnel working with cam rollers. They should be trained on safe operating procedures, potential hazards, emergency protocols, and proper use of personal protective equipment (PPE). Regular refresher training sessions and ongoing awareness programs can help reinforce safe practices and promote a safety-conscious culture.
  • Risk Assessment: Conducting a thorough risk assessment specific to the application and environment is crucial. Identify potential hazards associated with cam rollers, such as pinch points, entanglement risks, or flying debris. Assess the severity of each hazard and implement appropriate control measures to mitigate the risks, such as installing physical barriers, implementing safety interlocks, or providing warning signage.
  • Maintenance and Inspections: Regular maintenance and inspections of cam rollers are essential for identifying and addressing any issues that may compromise safety. Inspect the rollers, bearings, tracks, and associated components for signs of wear, damage, or misalignment. Follow manufacturer recommendations for maintenance intervals, lubrication schedules, and component replacements to ensure the safe and reliable operation of cam rollers.
  • Proper Load Handling: Ensure that cam rollers are not subjected to loads or forces beyond their specified capacity. Overloading cam rollers can lead to premature wear, component failure, or dangerous conditions. Consider the weight, size, and distribution of the load being tracked and ensure that the cam rollers and associated components are designed to handle the applied loads safely.
  • Proper Installation and Alignment: Follow proper installation procedures and ensure accurate alignment of cam rollers. Improper installation or misalignment can result in unexpected movements, excessive friction, or component failures, posing safety risks. Adhere to manufacturer guidelines and recommended alignment procedures to ensure safe and reliable operation.
  • PPE Usage: Personal protective equipment (PPE) should be provided and used appropriately by personnel working with or in the vicinity of cam rollers. Depending on the specific hazards involved, PPE such as safety glasses, gloves, hearing protection, or safety shoes may be required to mitigate the risk of injuries due to flying debris, contact with moving parts, noise exposure, or other potential hazards.

It is important to consult relevant safety regulations, industry standards, and guidelines specific to the application and location to ensure full compliance with safety requirements when using cam rollers in industrial settings. Regular safety audits, hazard assessments, and open communication with personnel can help identify and address potential safety concerns, creating a safer working environment for everyone involved.

cam roller

Can you provide examples of products or machinery that commonly use cam rollers?

Cam rollers are widely used in various products and machinery across different industries. Their unique design and functionalities make them suitable for applications that require precise motion, controlled tracking, and efficient operation. Here are some examples of products or machinery that commonly utilize cam rollers:

  • Printing Machinery: Cam rollers are commonly found in printing machinery, such as offset printers, flexographic printers, and digital printers. They are used to precisely guide the movement of paper or printing substrates through the printing process, ensuring accurate registration and consistent print quality.
  • Material Handling Systems: Cam rollers are extensively used in material handling systems, including conveyor systems, packaging equipment, and automated storage and retrieval systems (ASRS). They help in guiding and tracking the movement of items, pallets, or containers, ensuring smooth and controlled transportation within the system.
  • Industrial Robots: Cam rollers play a vital role in industrial robots, particularly in robotic arms and manipulators. They facilitate precise and controlled motion, allowing the robot to perform accurate positioning, pick-and-place operations, and assembly tasks with high repeatability and reliability.
  • Textile Machinery: Cam rollers are commonly utilized in textile machinery, such as weaving looms, knitting machines, and spinning machines. They assist in guiding the movement of yarns, threads, or fabrics, ensuring proper tension and alignment during the manufacturing process.
  • Automotive Manufacturing: Cam rollers are employed in various stages of automotive manufacturing, including assembly lines, paint booths, and body-in-white operations. They contribute to the smooth and precise movement of car bodies, parts, or components, enabling efficient production processes.
  • Packaging Machinery: Cam rollers are commonly integrated into packaging machinery, such as form-fill-seal machines, cartoners, and labeling machines. They assist in guiding the packaging materials, ensuring accurate positioning, and controlled movement during the packaging process.
  • Food Processing Equipment: Cam rollers find applications in food processing equipment, including filling machines, sorting systems, and packaging lines. They aid in the smooth and precise movement of food products, containers, or packaging materials, maintaining the integrity and quality of the processed food items.
  • Medical Devices: Cam rollers are utilized in medical devices and equipment, such as diagnostic machines, laboratory automation systems, and surgical robots. They contribute to the precise movement and positioning required for accurate diagnostic results, sample handling, or surgical procedures.

These examples represent just a few of the many products and machinery where cam rollers are commonly used. Their versatility, precision, and reliability make them suitable for a wide range of applications in industries like printing, material handling, robotics, textiles, automotive manufacturing, packaging, food processing, and medical devices.

In summary, cam rollers are widely employed in various products and machinery across different industries. Their usage in printing machinery, material handling systems, industrial robots, textile machinery, automotive manufacturing, packaging machinery, food processing equipment, and medical devices demonstrates their significance in achieving precise motion, controlled tracking, and efficient operation in diverse applications.

cam roller

How does the design of a cam roller contribute to efficient motion and tracking?

The design of a cam roller plays a crucial role in ensuring efficient motion transmission and tracking along the surface profile of a cam or track. Various design features are incorporated to optimize performance, reliability, and smooth operation. Here’s a detailed explanation of how the design of a cam roller contributes to efficient motion and tracking:

  • Bearing Element: The choice of the bearing element, such as cylindrical rollers, needle rollers, or ball bearings, is a critical design consideration. The bearing element should be selected based on the specific application requirements, including load capacity, speed, and precision. The bearing element allows for smooth rolling motion and efficient load distribution, minimizing friction and wear.
  • Outer Ring Profile: The outer ring of a cam roller has a profile that matches the shape of the cam or track. This design feature ensures accurate tracking and follows the contour of the cam or track surface. The outer ring provides guidance and support to the roller, allowing it to smoothly traverse the cam profile without slipping or deviating from the desired path.
  • Stud or Yoke: The stud or yoke is the component that attaches the cam roller to the moving part of the mechanical system. It is designed to provide secure attachment and proper alignment. The stud or yoke may have additional features such as threaded ends, lubrication provisions, or seals to enhance functionality and ease of maintenance.
  • Roller Retainers: In some cam roller designs, roller retainers are used to maintain proper spacing and alignment of the rollers within the outer ring. These retainers prevent roller skewing and ensure even load distribution among the rollers. By maintaining precise roller alignment, efficient motion transmission and tracking are achieved.
  • Sealing and Lubrication: Proper sealing and lubrication are essential for the efficient functioning of cam rollers. Seals prevent contaminants from entering the bearing and protect against lubricant leakage. Lubrication reduces friction and wear, ensuring smooth rolling motion. The design of cam rollers may include sealing elements and lubrication provisions to facilitate effective sealing and lubrication maintenance.

The careful consideration of these design factors contributes to efficient motion and tracking in cam rollers. When the cam roller is in operation, these design features enable it to smoothly follow the profile of the cam or track, ensuring accurate and reliable motion transmission. Efficient tracking minimizes energy losses, reduces wear, and enhances the overall performance of the mechanical system.

It is important to note that the design of a cam roller should be selected based on the specific requirements of the application. Factors such as load capacity, speed, operating conditions, and precision requirements should be taken into account to ensure optimal performance and longevity of the cam roller in the mechanical system.

In summary, the design of a cam roller, including the bearing element, outer ring profile, stud or yoke, roller retainers, sealing, and lubrication, contributes to efficient motion transmission and tracking. These design features enable smooth rolling motion, accurate tracking along the cam profile, and reliable performance in various mechanical systems.

China Professional Track Rollers Kr35 CF-5/8 Cam Follower Needle Bearing  China Professional Track Rollers Kr35 CF-5/8 Cam Follower Needle Bearing
editor by CX 2024-04-12

China Custom China Customize Size Compact Spinning Bearing for Textile Machinery Cam Follower Bearing

Product Description

Welcome to HangZhou XIHU (WEST LAKE) DIS. FLIGHT SEIKO MACHINERY CO.,LTD !
We offer a wide variety of precision machining capabilities including high quality precision machined parts,
Mechanical assemblies,and cutom fabrication for automobile,textile machinery,construction machinery etc.
Our manufacturing and process capabilities are ISO9000 Certified.
 

Stud type track rollers is composed of a stud used as the tray of a group of rollers and a thick wall outer ring. The shoulder of the stud and the surface retaining ring on the stud form the guiding faces on the 2 sides of the outer ring. When the curve rollers are running on the plain tray or cam wheel, the inner stress on the rollers will increase due to the deformation of the outer ring. Therefore the rated load should be selected as curve roller column in this operational case.

 

Characteristic of Stud type track rollers

Model

External dimensions

 

D

d

C

B

mm

9185718

35

30

23

62

9185717

65

30

23

41.5

YSN-10A

100

 

48

80

YSN-11A 100   48 68
YSN-03 62 25   16
YSN-16 42 16 9.9 10
YSN-23 120 36   49

Custom size requirement are also available

 

Our advantage:
1.The original 100% factory, more than 10 years’ production experience
2.Produce and process products according to your drawings and requirement.
3.All kinds of surface treatment available,such as anodizing,power coating,painting,polishing and etc.
4.Our professional R&D and QC team can strictily control the product quality to meet your requirement.
5.Our products are of high quality at cheap price,and delivered on time.
 

Manufacturing strength & Vehicle processing line

1.Professional operators

2.Adopting advanced CNC machine tools in Japan

3.Totally enclosed production workshop

4.Experienced managers

5.Digital control production line

6.Advanced level of technology

 

 

Production Detection

1.Complete testing facilities

2.Perfect measurement methods

3.Perfect production detection methods

4.Strong QC team,conduct comprehensive quality control
 

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Rolling Body: Stud Type Track Rollers
The Number of Rows: Stud Type Track Rollers
Outer Dimension: Customized
Material: Customized
Spherical: Stud Type Track Rollers
Load Direction: Stud Type Track Rollers
Samples:
US$ 0/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

cam roller

What safety considerations should be taken into account when using cam rollers in industrial settings?

When using cam rollers in industrial settings, several safety considerations should be taken into account to ensure the well-being of personnel, prevent accidents, and maintain a safe working environment. Here are some important safety considerations when using cam rollers:

  • Proper Guarding: Cam rollers should be properly guarded to prevent accidental contact with moving parts. Depending on the specific application and the level of exposure, appropriate guarding measures such as barriers, enclosures, or safety covers should be in place to protect operators and other personnel from potential hazards associated with rotating cam rollers.
  • Lockout/Tagout Procedures: Before performing maintenance or repair tasks on cam rollers or associated equipment, appropriate lockout/tagout procedures should be followed. Lockout/tagout procedures help ensure that energy sources are isolated, machinery is de-energized, and appropriate warning devices are in place to prevent unintentional startup or release of stored energy, minimizing the risk of injury.
  • Training and Awareness: Adequate training should be provided to operators and maintenance personnel working with cam rollers. They should be trained on safe operating procedures, potential hazards, emergency protocols, and proper use of personal protective equipment (PPE). Regular refresher training sessions and ongoing awareness programs can help reinforce safe practices and promote a safety-conscious culture.
  • Risk Assessment: Conducting a thorough risk assessment specific to the application and environment is crucial. Identify potential hazards associated with cam rollers, such as pinch points, entanglement risks, or flying debris. Assess the severity of each hazard and implement appropriate control measures to mitigate the risks, such as installing physical barriers, implementing safety interlocks, or providing warning signage.
  • Maintenance and Inspections: Regular maintenance and inspections of cam rollers are essential for identifying and addressing any issues that may compromise safety. Inspect the rollers, bearings, tracks, and associated components for signs of wear, damage, or misalignment. Follow manufacturer recommendations for maintenance intervals, lubrication schedules, and component replacements to ensure the safe and reliable operation of cam rollers.
  • Proper Load Handling: Ensure that cam rollers are not subjected to loads or forces beyond their specified capacity. Overloading cam rollers can lead to premature wear, component failure, or dangerous conditions. Consider the weight, size, and distribution of the load being tracked and ensure that the cam rollers and associated components are designed to handle the applied loads safely.
  • Proper Installation and Alignment: Follow proper installation procedures and ensure accurate alignment of cam rollers. Improper installation or misalignment can result in unexpected movements, excessive friction, or component failures, posing safety risks. Adhere to manufacturer guidelines and recommended alignment procedures to ensure safe and reliable operation.
  • PPE Usage: Personal protective equipment (PPE) should be provided and used appropriately by personnel working with or in the vicinity of cam rollers. Depending on the specific hazards involved, PPE such as safety glasses, gloves, hearing protection, or safety shoes may be required to mitigate the risk of injuries due to flying debris, contact with moving parts, noise exposure, or other potential hazards.

It is important to consult relevant safety regulations, industry standards, and guidelines specific to the application and location to ensure full compliance with safety requirements when using cam rollers in industrial settings. Regular safety audits, hazard assessments, and open communication with personnel can help identify and address potential safety concerns, creating a safer working environment for everyone involved.

cam roller

How do cam rollers contribute to precise and controlled motion in machinery?

Cam rollers play a significant role in ensuring precise and controlled motion in various machinery applications. Their design and functionality contribute to accurate tracking, smooth operation, and controlled movement. Here’s a detailed explanation of how cam rollers contribute to precise and controlled motion in machinery:

  • Cam Profile Following: Cam rollers are specifically designed to follow the profile of a cam or track. The outer ring of the cam roller is shaped to match the contour of the cam surface. As the cam rotates or moves, the cam roller maintains contact with the cam profile, ensuring precise tracking and controlled motion along the desired path. This cam profile following capability enables machinery to achieve accurate and repeatable motion.
  • Rolling Motion: Cam rollers utilize rolling motion to traverse the cam profile. The rolling motion reduces friction compared to sliding or rubbing contact, resulting in smoother operation and improved energy efficiency. The rolling action of cam rollers allows for controlled movement with minimal resistance, ensuring precise motion and minimizing wear and tear.
  • Load Distribution: Cam rollers are designed to distribute the applied load evenly among the rolling elements. This load distribution capability minimizes stress concentrations and prevents excessive wear on individual rollers. By distributing the load effectively, cam rollers contribute to maintaining precise and controlled motion without compromising performance or causing premature failure.
  • High Rigidity: Cam rollers are constructed to provide high rigidity, which is vital for precise and controlled motion. The materials and design of cam rollers ensure minimal deformation or flexing during operation, allowing for accurate positioning and controlled movement. The high rigidity of cam rollers enables machinery to maintain tight tolerances and achieve the desired motion without unwanted deviations.
  • Roller Retainers: Some cam roller designs incorporate roller retainers or cages that hold the rolling elements in place and maintain proper spacing. These retainers prevent roller skewing and ensure controlled movement by guiding the rollers along the cam profile. The use of roller retainers enhances precision and eliminates the risk of roller misalignment, contributing to precise and controlled motion in machinery.
  • Precision Bearings: Cam rollers are equipped with precision bearings that provide smooth rolling motion and reduce internal friction. These bearings are designed to handle both radial and axial loads, ensuring stable and controlled motion in various directions. The precision bearings in cam rollers contribute to the overall precision and controlled movement of the machinery.

By incorporating these design features and functionalities, cam rollers contribute to precise and controlled motion in machinery. They enable accurate tracking of cam profiles, utilize rolling motion with reduced friction, distribute loads evenly, provide high rigidity, use roller retainers for proper alignment, and utilize precision bearings for smooth operation. All these factors work together to ensure precise positioning, controlled movement, and reliable performance in a wide range of machinery applications.

In summary, cam rollers contribute to precise and controlled motion in machinery through their cam profile following capability, rolling motion, load distribution, high rigidity, roller retainers, and precision bearings. These features enable machinery to achieve accurate positioning, smooth operation, and controlled movement, resulting in improved performance and productivity.

cam roller

In what industries or scenarios are cam rollers commonly employed?

Cam rollers, also known as cam followers or track rollers, find extensive usage in various industries and scenarios due to their versatile capabilities. These specialized roller bearings are employed in applications that require motion transmission, guidance, support, load handling, and compensation for misalignment. Here’s a detailed explanation of the industries and scenarios where cam rollers are commonly employed:

  • Automotive Industry: Cam rollers play a vital role in the automotive industry. They are used in engines to control valve timing, ensuring precise opening and closing of valves. Cam rollers are also utilized in suspension systems, where they guide the movement of suspension arms and provide support.
  • Material Handling and Conveyor Systems: Cam rollers are extensively employed in material handling and conveyor systems. They guide the movement of belts, chains, or rollers, ensuring smooth and controlled transportation of goods. Cam rollers provide support and help maintain proper alignment, contributing to efficient material handling operations.
  • Printing and Packaging Machinery: In printing and packaging machinery, cam rollers are commonly utilized. They are used to control tension and guide the movement of printing substrates or packaging materials. Cam rollers ensure consistent and accurate positioning of materials, enabling high-quality printing and precise packaging.
  • Textile Industry: Cam rollers have significant applications in the textile industry. They are employed in textile machinery to control the feeding and positioning of fabrics. Cam rollers contribute to the precise movement and tension control of fabrics during various textile processes.
  • Construction and Heavy Machinery: Cam rollers are extensively used in construction machinery and heavy equipment. They provide support and handle heavy loads in applications such as excavators, cranes, and loaders. Cam rollers ensure smooth operation and reliable load-bearing capabilities in demanding construction environments.
  • Industrial Automation: Cam rollers find wide usage in industrial automation systems. They are employed in robotics, assembly lines, and automated machinery to transmit motion, guide components, and handle loads. Cam rollers contribute to the precise movement and positioning of components in automated processes.
  • Aerospace and Defense: Cam rollers have applications in the aerospace and defense industries. They are utilized in aircraft landing gear systems, missile guidance mechanisms, and other critical mechanical systems. Cam rollers provide reliable motion transmission, support, and load handling capabilities in aerospace and defense applications.

These are just a few examples of the industries and scenarios where cam rollers are commonly employed. Their versatility and reliability make them suitable for a wide range of applications that require precise motion control, load handling, and guidance. The specific design, size, and material of cam rollers are selected based on the requirements of each industry or scenario.

In summary, cam rollers find extensive usage in industries such as automotive, material handling, printing and packaging, textile, construction, industrial automation, aerospace, and defense. They are employed in scenarios that require motion transmission, guidance, support, load handling, and compensation for misalignment. Cam rollers contribute to the efficient and reliable operation of mechanical systems across diverse industries and applications.

China Custom China Customize Size Compact Spinning Bearing for Textile Machinery Cam Follower Bearing  China Custom China Customize Size Compact Spinning Bearing for Textile Machinery Cam Follower Bearing
editor by CX 2024-04-11

China Standard CFH-3-B Stud Type Track Rollers Cam Follower Bearing For Machine Tools

Product Description

CFH-3-B Stud Type Track Rollers Cam Follower Bearing For Machine Tools

                                                             Application

                        Metals                                                      Mining, Mineral Processing and Cement   
   
                        Railways                                                  Industrial Applications.

                        Material Handling                                     Agriculture

                        Construction                                             Machine Tools
                       
                         Auto Parts                                                Power Generators 

Cam Followers Stud-Type Track Rollers are designed to run on all types of tracks and to be used in cam drives, conveyor systems, etc.

They are based on either needle or cylindrical roller bearings. Instead of an inner ring, they have a threaded CHINAMFG stud (pin)

CFH-…B/CFH-…SB Stud Type Track Rollers Specification

Product Name Stud Type Track Rollers 
Precision Rating P6, P0, P5, P4, P2
Material Bearing Steel (GCr15)
Clearance C1 C2 C3
Vibration & Noisy Z1, Z2, Z3 V1, V2, V3
Features Inch Size, with Hexagon Hole
Application Machine Tools, Auto Parts, Power Generators,and other Industrial Applications
Certification ISO 9001: 2008
Packing 1. Neutral Packing Bearing 2. Industrial Packing 3. Commercial Packing Bearing 4. Customize
Delivery Time 30 – 45 Days After The Order is Confirmed
Shippment 1. By Sea 2. By Air 3. By Express

 

Bearing No. Dimensions (mm) Basic Load Rating(KN) Limited
Speed
Mass
Hexagon Hole Sealed Type D d C B B1 B2 G G1 C Co rpm kg
CFH-1/2-B CFH-1/2-SB 12.70 6.35 9.53 26.19 15.88 1/4-28 6.35 3.84 4.40 12000 0.012
CFH9/16B CFH9/16-SB 14.29 6.35 9.53 26.19 15.88 1/4-28 6.35 4.30 5.30 10000 0.015
CFH-5/8-B CFH-5/8-SB 15.88 7.94 11.11 30.96 19.05 5/16-24 7.94 5.20 7.00 8800 0.571
CFH11/16-B CFH-11/16-SB 17.46 7.94 11.11 30.96 19.05 5/16-24 7.94 6.50 8.50 8000 0.571
CFH-3/4-B CFH-3/4-SB 19.05 11.11 12.70 35.72 22.23 6.35 7/16-20 9.53 7.12 10.00 6400 0.039
CFH-7/8-B CFH-7/8-SB 22.23 11.11 12.70 35.72 22.23 6.35 7/16-20 9.53 7.12 10.00 6400 0.049
CFH-1-B CFH-1-SB 25.40 15.88 15.88 42.07 25.40 6.35 5/8-18 12.70 10.64 18.50 5200 0.093
CFH-1 1/8-B CFH-1 1/8-SB 28.58 15.88 15.88 42.07 25.40 6.35 5/8-18 12.70 10.64 18.50 5200 0.109
CFH-1 1/4-B CFH-1 1/4-SB 31.75 19.05 19.05 51.59 31.75 7.94 3/4-16 15.88 19.20 25.90 4400 0.176
CFH-1 3/8-B CFH-1 3/8-SB 34.93 19.05 19.05 51.59 31.75 7.94 3/4-16 15.88 19.20 25.90 4400 0.200
CFH-1 1/2-B CFH-11/2SB 38.10 22.23 22.23 61.12 38.10 9.53 7/8-14 19.05 23.00 32.70 3600 0.296
CFH-1 5/8-B CFH-1 5/8-SB 41.28 22.23 22.23 61.12 38.10 9.53 7/8-14 19.05 23.00 32.70 3600 0.329
CFH-1 3/4-B CFH-1 3/4-SB 44.45 25.40 25.40 70.64 44.45 11.11 1-14 22.23 28.70 45.40 3200 0.463
CFH-1 7/8-B CFH-1 7/8-SB 47.63 25.40 25.40 70.64 44.45 11.11 1-14 22.23 28.70 45.40 3200 0.508
CFH-2-B CFH-2-SB 50.80 28.58 31.75 83.34 50.80 12.70 1 1/8-12 25.40 37.30 65.80 2800 0.722
CFH-2 1/4-B CFH-2 1/4-SB 57.15 28.58 31.75 83.34 50.80 12.70 1 1/8-12 25.40 37.30 65.80 2800 0.858
CFH-2 1/2-B CFH-2 1/2-SB 63.50 31.75 38.10 96.04 57.15 14.29 1 1/4-12 28.58 54.00 102.30   1.260
CFH-2 3/4-B CFH-2 3/4-SB 69.85 31.75 38.10 96.04 57.15 14.29 1 1/4-12 28.58 54.00 102.30   1.460
CFH-3-B CFH-3-SB 76.20 38.10 44.45 108.70 63.50 15.88 1 1/2-12 31.75 72.30 155.00   2.031
CFH-3 1/4-B CFH-3 1/4-SB 82.55 38.10 44.45 108.70 63.50 15.88 1 1/2-12 31.75 72.30 155.00   2.291
CFH-3 1/2-B CFH-3 1/2-SB 88.90 44.45 50.80 121.40 69.85 17.46 1 3/4-12 34.93 104.80 196.70   3.130
CFH-4-B CFH-4-SB 101.60 50.80 57.15 146.80 88.90 19.05 2-12 38.10 138.00 278.00   4.750
  CFH-5-SB 127.00 63.50 69.85 200.00 128.60 22.23 2 1/2-12 65.07 214.00 422.00   9.540
  CFH-6-SB 152.40 76.20 82.55 236.50 152.40 25.40 3-12 76.20 276.00 500.00   16.200
  CFH-7-SB 177.80 88.90 95.25 292.00 195.25 31.75 3 1/2-12 104.80 347.00 665.00   24.600

                                                       
                                                               About Us

HENGLI Machinery Company is a well-established Chinese bearing supplier. We design, manufacture and wholesale bearings. 
Our specialized manufacturer of Spherical Roller Bearing Cylindrical Roller Bearing, XIHU (WEST LAKE) DIS. Rolling Bearing Co., Ltd was
established in 1970 and is accredited by the Chinese Ministry of Machine Building. 

We invested in 2 additional specialized bearing factories, which allow us to provide our clients with top of the line products
 such as Needle Roller Bearings, Cam Follower Bearings, Thrust Bearings,Spherical Plain Bearings, Rod Ends Bearings, Ball
Joint Bearings, Tapered Roller Bearings, Wheel Hub Bearings 
and Non-Standard Bearings.

FAQ
Q1 – What is our advantages? 

A – Manufacturer – Do it only with the Best; 

-Your Choice make different. 

Q2 – Our Products

A – Spherical Roller Bearing, Cylindrical Roller Bearing, Needle Roller Bearing, Cam Followers, Thrust Bearing

– Spherical Plain Bearing, Rod End, Ball Joint, Wheel Hub, Tapered Roller Bearing

Q3 – Process of our production

A – Heat Treatment – Grinding – Parts Inspection – Assembly – Final Inspection – Packing

Q4 – How to customize bearing(non-standard) from your company? 

A -We offer OEM, Customized(Non-standard) service and you need to provide drawing and detailed Technical Data. 

Q5 – What should I care before installation? 

A – Normally, the preservative with which new bearings are coated before leaving the factory does not need to be

Removed; It is only necessary to wipe off the outside cylin­drical surface and bore, if the grease is not compatible

With the preservative, it is necessary to wash and carefully dry the bearing. 

-Bearings should be installed in a dry, dust-free room away from metal working or other machines producing

Swarf and dust. 

Q6 – How to stock and maintenance my bearings right? 

A – Do not store bearings directly on concrete floors, where water can condense and collect on the bearing; 

-Store the bearings on a pallet or shelf, in an area where the bearings will not be subjected to high humidity

Or sudden and severe temperature changes that may result in condensation forming; 

-Always put oiled paper or, if not available, plastic sheets between rollers and cup races of tapered roller bearings. 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Rolling Body: Roller Bearings
The Number of Rows: Single
Outer Dimension: 26.19mm-292mm
Material: Bearing Steel
Spherical: Non-Aligning Bearings
Load Direction: Radial Bearing
Samples:
US$ 1/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

cam roller

What safety considerations should be taken into account when using cam rollers in industrial settings?

When using cam rollers in industrial settings, several safety considerations should be taken into account to ensure the well-being of personnel, prevent accidents, and maintain a safe working environment. Here are some important safety considerations when using cam rollers:

  • Proper Guarding: Cam rollers should be properly guarded to prevent accidental contact with moving parts. Depending on the specific application and the level of exposure, appropriate guarding measures such as barriers, enclosures, or safety covers should be in place to protect operators and other personnel from potential hazards associated with rotating cam rollers.
  • Lockout/Tagout Procedures: Before performing maintenance or repair tasks on cam rollers or associated equipment, appropriate lockout/tagout procedures should be followed. Lockout/tagout procedures help ensure that energy sources are isolated, machinery is de-energized, and appropriate warning devices are in place to prevent unintentional startup or release of stored energy, minimizing the risk of injury.
  • Training and Awareness: Adequate training should be provided to operators and maintenance personnel working with cam rollers. They should be trained on safe operating procedures, potential hazards, emergency protocols, and proper use of personal protective equipment (PPE). Regular refresher training sessions and ongoing awareness programs can help reinforce safe practices and promote a safety-conscious culture.
  • Risk Assessment: Conducting a thorough risk assessment specific to the application and environment is crucial. Identify potential hazards associated with cam rollers, such as pinch points, entanglement risks, or flying debris. Assess the severity of each hazard and implement appropriate control measures to mitigate the risks, such as installing physical barriers, implementing safety interlocks, or providing warning signage.
  • Maintenance and Inspections: Regular maintenance and inspections of cam rollers are essential for identifying and addressing any issues that may compromise safety. Inspect the rollers, bearings, tracks, and associated components for signs of wear, damage, or misalignment. Follow manufacturer recommendations for maintenance intervals, lubrication schedules, and component replacements to ensure the safe and reliable operation of cam rollers.
  • Proper Load Handling: Ensure that cam rollers are not subjected to loads or forces beyond their specified capacity. Overloading cam rollers can lead to premature wear, component failure, or dangerous conditions. Consider the weight, size, and distribution of the load being tracked and ensure that the cam rollers and associated components are designed to handle the applied loads safely.
  • Proper Installation and Alignment: Follow proper installation procedures and ensure accurate alignment of cam rollers. Improper installation or misalignment can result in unexpected movements, excessive friction, or component failures, posing safety risks. Adhere to manufacturer guidelines and recommended alignment procedures to ensure safe and reliable operation.
  • PPE Usage: Personal protective equipment (PPE) should be provided and used appropriately by personnel working with or in the vicinity of cam rollers. Depending on the specific hazards involved, PPE such as safety glasses, gloves, hearing protection, or safety shoes may be required to mitigate the risk of injuries due to flying debris, contact with moving parts, noise exposure, or other potential hazards.

It is important to consult relevant safety regulations, industry standards, and guidelines specific to the application and location to ensure full compliance with safety requirements when using cam rollers in industrial settings. Regular safety audits, hazard assessments, and open communication with personnel can help identify and address potential safety concerns, creating a safer working environment for everyone involved.

cam roller

What advantages do cam rollers offer compared to other tracking components?

Cam rollers offer several advantages compared to other tracking components, making them a preferred choice in many applications. Their unique design and features provide distinct benefits that contribute to improved performance, reliability, and efficiency. Here’s a detailed explanation of the advantages that cam rollers offer compared to other tracking components:

  • Precision Tracking: Cam rollers are specifically designed to follow the profile of a cam or track with high precision. The cam profile following capability ensures accurate tracking along the desired path, allowing for precise positioning and controlled motion. Other tracking components may not provide the same level of precision, leading to deviations or inaccuracies in the motion system.
  • Rolling Motion: Cam rollers utilize rolling motion, where the rolling elements rotate instead of sliding or rubbing against the track. This rolling action reduces friction, resulting in smoother operation, improved energy efficiency, and reduced wear on both the cam roller and the track. In contrast, components that rely on sliding or rubbing contact may experience higher friction, leading to increased wear and decreased efficiency.
  • Load Distribution: Cam rollers distribute the applied load evenly among the rolling elements. This load distribution capability minimizes stress concentrations and ensures that no single point bears an excessive load. As a result, cam rollers can handle higher loads while maintaining stability and longevity. Other tracking components may experience localized stress concentrations, leading to premature wear or failure under heavy loads.
  • High Rigidity: Cam rollers are designed to provide high rigidity, allowing for accurate positioning and controlled motion. The materials and construction of cam rollers ensure minimal flexing or deformation during operation, maintaining tight tolerances and preventing unwanted deviations. In comparison, some other tracking components may exhibit lower rigidity, leading to less precise motion and increased susceptibility to external forces.
  • Wide Range of Configurations: Cam rollers are available in various configurations, such as stud-type cam rollers and yoke-type cam rollers, to accommodate different attachment and mounting requirements. This versatility makes them suitable for a wide range of applications and machinery configurations. In contrast, some other tracking components may have limited options or may not offer the same level of adaptability to diverse mounting or attachment needs.
  • Cost-Effectiveness: Cam rollers are generally cost-effective solutions for motion tracking. They offer a good balance between performance and cost, making them a preferred choice in many applications. Their durability, reliability, and long service life contribute to overall cost savings by minimizing maintenance, replacement, and downtime expenses. Other tracking components with similar performance characteristics may be more expensive or may not provide the same level of reliability.

By offering precision tracking, rolling motion, load distribution, high rigidity, versatile configurations, and cost-effectiveness, cam rollers stand out as advantageous tracking components in comparison to other alternatives. These advantages make cam rollers suitable for a wide range of applications, including machinery, conveyors, material handling systems, and automation equipment.

In summary, cam rollers offer distinct advantages compared to other tracking components. Their precision tracking, rolling motion, load distribution, high rigidity, versatile configurations, and cost-effectiveness contribute to improved performance, reliability, and efficiency in motion systems.

cam roller

What is a cam roller, and how is it utilized in mechanical systems?

A cam roller, also known as a cam follower or track roller, is a specialized type of roller bearing used in mechanical systems. It is designed to follow the surface profile of a cam or track and transmit motion or force between the cam and a moving component. Here’s a detailed explanation of what a cam roller is and how it is utilized in mechanical systems:

A cam roller consists of a cylindrical roller, needle roller, or ball bearing that is mounted in a stud or yoke. The stud or yoke provides a means of attachment to the moving component of the mechanical system. The roller or bearing element is housed within a thick-walled outer ring, which serves as a guide and support for the roller. The outer ring has a profile that matches the shape of the cam or track over which the cam roller operates.

The primary function of a cam roller is to convert rotary motion into linear motion or vice versa. As the cam or track rotates, the cam roller follows the profile, causing the roller to move along the track. This motion can be utilized in various ways depending on the specific application. Here are some common uses of cam rollers in mechanical systems:

  • Motion Transmission: Cam rollers are often used to transmit motion from a rotating cam to a reciprocating or oscillating component. For example, in engines, cam followers are used to transfer the motion of the camshaft to the valves, opening and closing them at the appropriate timing.
  • Guiding and Support: Cam rollers can also provide guidance and support to moving components in a mechanical system. They help maintain proper alignment and prevent lateral movement or deflection. This is particularly useful in applications such as conveyor systems, where cam rollers guide the movement of belts or chains.
  • Load Bearing: Cam rollers are designed to withstand high loads and provide support to heavy-duty applications. They are often used in machinery and equipment where there is a need for reliable load-bearing capabilities. Examples include construction machinery, material handling equipment, and industrial automation systems.
  • Compensating for Misalignment: In some applications, cam rollers are utilized to compensate for misalignment between components. The rolling motion of the cam follower allows it to adjust and accommodate slight deviations in the cam or track profile, ensuring smooth operation even in imperfect conditions.

The choice of cam roller design, size, and material depends on the specific requirements of the application. Factors such as load capacity, speed, operating conditions, and precision requirements are taken into consideration when selecting the appropriate cam roller. Regular maintenance, including lubrication and inspection of the cam roller, is important to ensure its proper functioning and longevity in the mechanical system.

In summary, a cam roller is a specialized type of roller bearing used in mechanical systems to transmit motion, provide guidance and support, bear loads, and compensate for misalignment. Its ability to follow the profile of a cam or track allows for efficient conversion of rotary motion to linear motion or vice versa. Cam rollers find application in a wide range of industries and play a crucial role in ensuring the smooth and reliable operation of mechanical systems.

China Standard CFH-3-B Stud Type Track Rollers Cam Follower Bearing For Machine Tools  China Standard CFH-3-B Stud Type Track Rollers Cam Follower Bearing For Machine Tools
editor by CX 2024-04-10

China Best Sales 26*10*12mm High Quality KRV 26 PP Stud Type Track Rollers Cam Follower Bearing For Machine Tools

Product Description

26*10*12mm High Quality KRV 26 PP Stud Type Track Rollers Cam Follower Bearing For Machine Tools


                                                             Application

                       Agriculture                                                       Turntable, fishing rod   
   
                       Tools, robots                                                     Assembly lines, industrial machinery

                       Cars, motorcycles                                            Office fans
                       
Track Roller Bearings are the roller bearings with cylindrical roller elements, compared with the diameter, the needle roller
are both thin and long, so they are called needle roller. Although the section is small, the type of bearings still has the high
ablity of load, it specially can be used tothe situation of being restricted of the radial space.

krv…pp Stud Type Track Rollers Specification

Product Name Stud Type Track Rollers 
Precision Rating P6, P0, P5, P4, P2
Material Bearing Steel (GCr15)
Clearance  C1 C2 C3 
Vibration & Noisy Z1, Z2, Z3 V1, V2, V3
Features Inch Size, with Eccentric Colla, with Hexagon Hole
Application Machine Tools, Auto Parts, Power Generators,and other Industrial Applications
Certification ISO 9001: 2008
Packing 1. Neutral Packing Bearing 2. Industrial Packing 3. Commercial Packing Bearing 4. Customize
Delivery Time 30 – 45 Days After The Order is Confirmed
Shippment 1. By Sea 2. By Air 3. By Express

Bearing No. Dimensions (mm) Basic Load Rating (KN) Limited
Speed
Mass
Sealed  Type D d C r
min
B B1 B2 G G1 M1 C1 d2 C Co rpm kg
KRV 16 PP 16 6 11 0.2 28 16.0 M6X1 8 0.6 12 3.88 5.20 3040 0.571
KRV 19 PP 19 8 11 0.2 32 20.0 M8X1.25 10 0.6 14 4.40 6.32 2480 0.032
KRV 22 PP 22 10 12 0.3 36 23.0 M10X1 12 0.6 17 5.04 7.28 2080 0.045
KRV 26 PP 26 10 12 0.3 36 23.0 M10X1 12 0.6 17 5.84 9.04 2080 0.061
KRV 30 PP 30 12 14 0.6 40 25.0 6 M12X1.5 13 3 0.6 23 7.60 11.68 1680 0.089
KRV 32 PP 32 12 14 0.6 40 25.0 6 M12X1.5 13 3 0.6 23 8.00 12.64 1680 0.100
KRV 35 PP 35 16 18 0.6 52 32.5 8 M16X1.5 17 3 0.8 27 10.24 18.40 1280 0.171
KRV 40 PP 40 18 20 1.0 58 36.5 8 M18X1.5 19 3 0.8 32 11.84 21.20 1120 0.249
KRV 62 PP 62 24 29 1.0 80 49.5 11 M24X1.5 25 4 0.8 44 27.20 60.80 880 0.802
KRV 72 PP 72 24 29 1.1 80 49.5 11 M24X1.5 25 4 0.8 44 29.60 68.00 880 1.045
KRV 80 PP 80 30 35 1.1 100 63.0 15 M30X1.5 32 4 1.0 53 39.60 96.00 680 1.561
KRV 90 PP 90 30 35 1.1 100 63.0 15 M30X1.5 32 4 1.0 53 42.40 104.00 680 1.970

                                                             About Us

HENGLI Machinery Company is a well-established Chinese bearing supplier. We design, manufacture and wholesale bearings. 

Our specialized manufacturer of Spherical Roller Bearing Cylindrical Roller Bearing, XIHU (WEST LAKE) DIS. Rolling Bearing Co., Ltd was
established in 1970 and is accredited by the Chinese Ministry of Machine Building. 

We invested in 2 additional specialized bearing factories, which allow us to provide our clients with top of the line products 
such as Needle Roller Bearings, Cam Follower Bearings, Thrust Bearings, Spherical Plain Bearings, Rod Ends Bearings, 
Ball Joint Bearings, Tapered Roller Bearings, Wheel Hub Bearings and Non-Standard Bearings. 

FAQ
Q1 – What is our advantages? 

A – Manufacturer – Do it only with the Best; 

-Your Choice make different. 

Q2 – Our Products

A – Spherical Roller Bearing, Cylindrical Roller Bearing, Needle Roller Bearing, Cam Followers, Thrust Bearing

– Spherical Plain Bearing, Rod End, Ball Joint, Wheel Hub, Tapered Roller Bearing

Q3 – Process of our production

A – Heat Treatment – Grinding – Parts Inspection – Assembly – Final Inspection – Packing

Q4 – How to customize bearing(non-standard) from your company? 

A -We offer OEM, Customized(Non-standard) service and you need to provide drawing and detailed Technical Data. 

Q5 – What should I care before installation? 

A – Normally, the preservative with which new bearings are coated before leaving the factory does not need to be

Removed; It is only necessary to wipe off the outside cylin­drical surface and bore, if the grease is not compatible

With the preservative, it is necessary to wash and carefully dry the bearing. 

-Bearings should be installed in a dry, dust-free room away from metal working or other machines producing

Swarf and dust. 

Q6 – How to stock and maintenance my bearings right? 

A – Do not store bearings directly on concrete floors, where water can condense and collect on the bearing; 

-Store the bearings on a pallet or shelf, in an area where the bearings will not be subjected to high humidity

Or sudden and severe temperature changes that may result in condensation forming; 

-Always put oiled paper or, if not available, plastic sheets between rollers and cup races of tapered roller bearings. 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Rolling Body: Roller Bearings
The Number of Rows: Single
Outer Dimension: 6mm-30mm
Material: Bearing Steel
Spherical: Non-Aligning Bearings
Load Direction: Radial Bearing
Samples:
US$ 1/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

cam roller

Can you provide insights into the importance of proper installation and alignment of cam rollers?

Proper installation and alignment of cam rollers are crucial for achieving optimal performance, longevity, and reliability of the tracking system. The installation and alignment process directly impacts the functionality, efficiency, and lifespan of the cam rollers. Here are some key insights into the importance of proper installation and alignment:

  • Accurate Tracking: Proper installation ensures that the cam rollers are positioned correctly and aligned with the cam profile or track. Accurate alignment is essential for achieving precise and consistent tracking of objects or components. Even a slight misalignment can result in deviations from the desired path, causing positioning errors, reduced accuracy, and compromised system performance.
  • Smooth Motion: Correct installation and alignment play a significant role in enabling smooth and uninterrupted rolling motion of the cam rollers. Misalignment or improper installation can introduce friction, uneven loading, or binding, which can lead to jerky or erratic motion. On the other hand, proper alignment facilitates smooth and efficient rolling, minimizing energy losses, reducing wear, and ensuring seamless operation.
  • Load Distribution: Proper alignment helps distribute the load evenly among the cam rollers and the associated components. Uniform load distribution prevents excessive stress on individual rollers, bearings, or tracks, reducing the risk of premature wear, fatigue, or failure. By ensuring proper load distribution, proper installation and alignment contribute to the longevity and reliability of the cam roller system.
  • Reduced Wear and Damage: Correct installation and alignment minimize friction and wear between the cam rollers and the track. Improper alignment can cause rubbing, scraping, or uneven contact, leading to accelerated wear, surface damage, or deformation of the rollers or track. Proper alignment reduces these issues, extending the lifespan of the cam rollers and reducing the frequency of maintenance or replacements.
  • Optimized Performance: Properly installed and aligned cam rollers maximize the performance of the tracking system. When the cam rollers are aligned correctly, they can operate at their intended design parameters, ensuring efficient power transmission, accurate tracking, and smooth motion. This optimization leads to improved productivity, reduced downtime, and enhanced overall system performance.
  • Alignment Sensitivity: Cam roller systems are often sensitive to misalignment due to their precise nature. Small deviations in alignment can have a significant impact on the performance and functionality of the system. Therefore, it is crucial to follow manufacturer guidelines and recommended alignment procedures during installation to ensure proper alignment and avoid potential issues.
  • Ease of Maintenance: Proper installation and alignment facilitate easier maintenance and servicing of the cam rollers. When the cam rollers are correctly aligned, it becomes simpler to access and replace individual components, such as bearings or rollers, during routine maintenance or repairs. This reduces downtime, simplifies maintenance procedures, and ensures efficient upkeep of the tracking system.

In summary, proper installation and alignment of cam rollers are essential for achieving accurate tracking, smooth motion, load distribution, reduced wear, optimized performance, and ease of maintenance. By following proper installation procedures and ensuring precise alignment, the longevity, efficiency, and reliability of the cam roller system can be maximized, leading to improved overall system performance and longevity.

cam roller

How do cam rollers contribute to precise and controlled motion in machinery?

Cam rollers play a significant role in ensuring precise and controlled motion in various machinery applications. Their design and functionality contribute to accurate tracking, smooth operation, and controlled movement. Here’s a detailed explanation of how cam rollers contribute to precise and controlled motion in machinery:

  • Cam Profile Following: Cam rollers are specifically designed to follow the profile of a cam or track. The outer ring of the cam roller is shaped to match the contour of the cam surface. As the cam rotates or moves, the cam roller maintains contact with the cam profile, ensuring precise tracking and controlled motion along the desired path. This cam profile following capability enables machinery to achieve accurate and repeatable motion.
  • Rolling Motion: Cam rollers utilize rolling motion to traverse the cam profile. The rolling motion reduces friction compared to sliding or rubbing contact, resulting in smoother operation and improved energy efficiency. The rolling action of cam rollers allows for controlled movement with minimal resistance, ensuring precise motion and minimizing wear and tear.
  • Load Distribution: Cam rollers are designed to distribute the applied load evenly among the rolling elements. This load distribution capability minimizes stress concentrations and prevents excessive wear on individual rollers. By distributing the load effectively, cam rollers contribute to maintaining precise and controlled motion without compromising performance or causing premature failure.
  • High Rigidity: Cam rollers are constructed to provide high rigidity, which is vital for precise and controlled motion. The materials and design of cam rollers ensure minimal deformation or flexing during operation, allowing for accurate positioning and controlled movement. The high rigidity of cam rollers enables machinery to maintain tight tolerances and achieve the desired motion without unwanted deviations.
  • Roller Retainers: Some cam roller designs incorporate roller retainers or cages that hold the rolling elements in place and maintain proper spacing. These retainers prevent roller skewing and ensure controlled movement by guiding the rollers along the cam profile. The use of roller retainers enhances precision and eliminates the risk of roller misalignment, contributing to precise and controlled motion in machinery.
  • Precision Bearings: Cam rollers are equipped with precision bearings that provide smooth rolling motion and reduce internal friction. These bearings are designed to handle both radial and axial loads, ensuring stable and controlled motion in various directions. The precision bearings in cam rollers contribute to the overall precision and controlled movement of the machinery.

By incorporating these design features and functionalities, cam rollers contribute to precise and controlled motion in machinery. They enable accurate tracking of cam profiles, utilize rolling motion with reduced friction, distribute loads evenly, provide high rigidity, use roller retainers for proper alignment, and utilize precision bearings for smooth operation. All these factors work together to ensure precise positioning, controlled movement, and reliable performance in a wide range of machinery applications.

In summary, cam rollers contribute to precise and controlled motion in machinery through their cam profile following capability, rolling motion, load distribution, high rigidity, roller retainers, and precision bearings. These features enable machinery to achieve accurate positioning, smooth operation, and controlled movement, resulting in improved performance and productivity.

cam roller

How does the design of a cam roller contribute to efficient motion and tracking?

The design of a cam roller plays a crucial role in ensuring efficient motion transmission and tracking along the surface profile of a cam or track. Various design features are incorporated to optimize performance, reliability, and smooth operation. Here’s a detailed explanation of how the design of a cam roller contributes to efficient motion and tracking:

  • Bearing Element: The choice of the bearing element, such as cylindrical rollers, needle rollers, or ball bearings, is a critical design consideration. The bearing element should be selected based on the specific application requirements, including load capacity, speed, and precision. The bearing element allows for smooth rolling motion and efficient load distribution, minimizing friction and wear.
  • Outer Ring Profile: The outer ring of a cam roller has a profile that matches the shape of the cam or track. This design feature ensures accurate tracking and follows the contour of the cam or track surface. The outer ring provides guidance and support to the roller, allowing it to smoothly traverse the cam profile without slipping or deviating from the desired path.
  • Stud or Yoke: The stud or yoke is the component that attaches the cam roller to the moving part of the mechanical system. It is designed to provide secure attachment and proper alignment. The stud or yoke may have additional features such as threaded ends, lubrication provisions, or seals to enhance functionality and ease of maintenance.
  • Roller Retainers: In some cam roller designs, roller retainers are used to maintain proper spacing and alignment of the rollers within the outer ring. These retainers prevent roller skewing and ensure even load distribution among the rollers. By maintaining precise roller alignment, efficient motion transmission and tracking are achieved.
  • Sealing and Lubrication: Proper sealing and lubrication are essential for the efficient functioning of cam rollers. Seals prevent contaminants from entering the bearing and protect against lubricant leakage. Lubrication reduces friction and wear, ensuring smooth rolling motion. The design of cam rollers may include sealing elements and lubrication provisions to facilitate effective sealing and lubrication maintenance.

The careful consideration of these design factors contributes to efficient motion and tracking in cam rollers. When the cam roller is in operation, these design features enable it to smoothly follow the profile of the cam or track, ensuring accurate and reliable motion transmission. Efficient tracking minimizes energy losses, reduces wear, and enhances the overall performance of the mechanical system.

It is important to note that the design of a cam roller should be selected based on the specific requirements of the application. Factors such as load capacity, speed, operating conditions, and precision requirements should be taken into account to ensure optimal performance and longevity of the cam roller in the mechanical system.

In summary, the design of a cam roller, including the bearing element, outer ring profile, stud or yoke, roller retainers, sealing, and lubrication, contributes to efficient motion transmission and tracking. These design features enable smooth rolling motion, accurate tracking along the cam profile, and reliable performance in various mechanical systems.

China Best Sales 26*10*12mm High Quality KRV 26 PP Stud Type Track Rollers Cam Follower Bearing For Machine Tools  China Best Sales 26*10*12mm High Quality KRV 26 PP Stud Type Track Rollers Cam Follower Bearing For Machine Tools
editor by CX 2024-04-09

China supplier Cam Follower Stud Type Trace Roller Bearing

Product Description

    Needle roller bearings are a bearing that is classified as either radial or thrust depending on the direction of the load being supported. Needle roller bearings include bearings whose rollers slightly exceed the size range of needle rollers as stipulated by ISO. Needle roller bearings include drawn cup and CHINAMFG radial bearings, as well as application-specific cam followers, and roller followers. Thrust bearings include thrust needle bearings.
    Cage & Needle Roller Assemblies
    Cage & Needle roller assemblies consist of a complement of needle rollers held in place by a cage. Their unitized design makes for easy handling and installation. With no inner or outer ring, the low cross-section provides maximum load-carrying capability within the smallest envelope.
Properly lubricated, they can operate at high speeds thanks to the unique cage, which guides the rollers precisely. The controlled contour rollers in cage & Needle roller assemblies have an optimum profile which reduces end stresses, allows operation under moderate misalignment and prolongs bearing life.
Drawn Cup Needle Roller Bearings
   Drawn cup needle roller bearings (with a cage and full complement of rollers) have a unique outer ring structure. They have the following features: the thinnest outer ring among rolling bearings, high load capacity, high maximum permissive load owing to the use of carefully selected special alloy steel plates, a surface-hardened cage with high resistance to wear, high limiting speed, and ease of mounting.
CHINAMFG Needle Roller Bearings
  CHINAMFG needle roller bearings are high-accuracy bearings with maximum load capacity within a limited space for various operating conditions. Made of carefully selected vacuum-degassed bearing steel or carburizing steel, the raceway rings are finished with accurate grinding after heat treatment. The outer rings have strong integrated CHINAMFG and contain high-accuracy rollers that have the proper crowning finish. Lightweight and extremely strong, the cage guides the rollers accurately and smoothly.
Thrust Needle Roller Bearings
  Thrust needle bearings type comes in metric and inch designs. The cage & Needle roller assembly for the thrust needle bearing is a cage that has 2 pieces joined together, to which surface hardening is applied after the precision press processing of a steel plate, and in which high accuracy rollers are incorporated, in order to achieve rigidity and wear resistance. Many rollers are retained securely in the cage, taking large axial load, and yet rotating smoothly. Mounting space is so small that it is easy to replace a conventional sliding thrust washer. Different thicknesses of various types of thrust raceway washers are available in this cage & Needle roller assembly, which allows selection of the appropriate thickness suited for bearing peripheral mounting conditions.
Cam Followers
  Cam followers, which are equipped with a thick-wall outer ring, crowned rollers, and a stud with a hardened raceway surface, are especially tough and can sustain shock loads.
Roller Followers
  The roller follower with a thick-wall outer ring and crowned roller has a large load capacity which enables it to carry shock loads. Handling is easy since it it non-separating and applications such as track rollers, cams and rocker arms are wide.

Company

HangZhou Auto Bearing Co., Ltd. is located in the industrial park of HangZhou,which is 1 of the 4 great ancient capitals of China.Our company is the member of China Bearing Industry Association,cooperating with State Quality Supervision and Testing Center for bearing.Our company is a professional bearing manufacturer which integrated with research ,development and marketing services.

Our major products include deep groove ball bearing, spherical roller bearing, slewing ring, crossed roller bearing and other all kinds of high precision bearings.Our products are widely applied to motor industry,mining metallurgy,wind power generation,petroleum drilling,automobile and motorcycle etc..
Our company not only possesses advanced bearing manufacturing equipments and international first-class measuring instruments, but also has strong strength of manufacturing, inspecting and testing the high precision and reliability bearings.Each process is in strict accordance with the ISO9001 quality management system,which effectively guarantees the precise of products and stability of the performance. AUTO bearings are mainly exported to the United states,South Korea,Europe,etc., which have reached the high level of foreign similar products.
The soul of our business culture is [Detail makes competitive, innovation makes first-class”.We believe the production and management philosophy of [quality wins ,casting competitive products”.The company adheres to the zero-defect quality management for meeting customer requirements.

Packing

A. plastic box & outer carton & pallets
B. plastic bag & box & carton & pallet
C. tube package & middle box & carton & pallet
D. Depends on your needs

Delivery

A. Most orders will be shipped within 3-5 days of payment being received.
B. Samples will be shipped by cov2urier as FedEx,UPS,DHL,etc.

Thank you very much for taking time to view our company’s website. If you are interested in this product, please feel free to contact us. We are always here.

 

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Rolling Body: Roller Bearings
The Number of Rows: Single
Outer Dimension: Small and Medium-Sized (60-115mm)
Material: Bearing Steel
Spherical: Non-Aligning Bearings
Load Direction: Radial Bearing
Samples:
US$ 2/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

cam roller

Can you provide insights into the importance of proper installation and alignment of cam rollers?

Proper installation and alignment of cam rollers are crucial for achieving optimal performance, longevity, and reliability of the tracking system. The installation and alignment process directly impacts the functionality, efficiency, and lifespan of the cam rollers. Here are some key insights into the importance of proper installation and alignment:

  • Accurate Tracking: Proper installation ensures that the cam rollers are positioned correctly and aligned with the cam profile or track. Accurate alignment is essential for achieving precise and consistent tracking of objects or components. Even a slight misalignment can result in deviations from the desired path, causing positioning errors, reduced accuracy, and compromised system performance.
  • Smooth Motion: Correct installation and alignment play a significant role in enabling smooth and uninterrupted rolling motion of the cam rollers. Misalignment or improper installation can introduce friction, uneven loading, or binding, which can lead to jerky or erratic motion. On the other hand, proper alignment facilitates smooth and efficient rolling, minimizing energy losses, reducing wear, and ensuring seamless operation.
  • Load Distribution: Proper alignment helps distribute the load evenly among the cam rollers and the associated components. Uniform load distribution prevents excessive stress on individual rollers, bearings, or tracks, reducing the risk of premature wear, fatigue, or failure. By ensuring proper load distribution, proper installation and alignment contribute to the longevity and reliability of the cam roller system.
  • Reduced Wear and Damage: Correct installation and alignment minimize friction and wear between the cam rollers and the track. Improper alignment can cause rubbing, scraping, or uneven contact, leading to accelerated wear, surface damage, or deformation of the rollers or track. Proper alignment reduces these issues, extending the lifespan of the cam rollers and reducing the frequency of maintenance or replacements.
  • Optimized Performance: Properly installed and aligned cam rollers maximize the performance of the tracking system. When the cam rollers are aligned correctly, they can operate at their intended design parameters, ensuring efficient power transmission, accurate tracking, and smooth motion. This optimization leads to improved productivity, reduced downtime, and enhanced overall system performance.
  • Alignment Sensitivity: Cam roller systems are often sensitive to misalignment due to their precise nature. Small deviations in alignment can have a significant impact on the performance and functionality of the system. Therefore, it is crucial to follow manufacturer guidelines and recommended alignment procedures during installation to ensure proper alignment and avoid potential issues.
  • Ease of Maintenance: Proper installation and alignment facilitate easier maintenance and servicing of the cam rollers. When the cam rollers are correctly aligned, it becomes simpler to access and replace individual components, such as bearings or rollers, during routine maintenance or repairs. This reduces downtime, simplifies maintenance procedures, and ensures efficient upkeep of the tracking system.

In summary, proper installation and alignment of cam rollers are essential for achieving accurate tracking, smooth motion, load distribution, reduced wear, optimized performance, and ease of maintenance. By following proper installation procedures and ensuring precise alignment, the longevity, efficiency, and reliability of the cam roller system can be maximized, leading to improved overall system performance and longevity.

cam roller

What maintenance practices are recommended for cam rollers to ensure optimal functionality?

Proper maintenance is essential for ensuring the optimal functionality and longevity of cam rollers. Regular maintenance practices help prevent premature wear, minimize downtime, and maintain the performance of cam rollers in various applications. Here are some recommended maintenance practices for cam rollers:

  • Cleaning: Regularly clean the cam rollers to remove dust, dirt, and debris that can accumulate on the rolling surfaces. Use a soft brush or compressed air to clean the cam rollers, ensuring that no contaminants hinder their smooth operation.
  • Lubrication: Apply appropriate lubrication to the cam rollers to reduce friction and wear. Use lubricants recommended by the manufacturer, ensuring they are compatible with the materials and operating conditions of the cam rollers. Regularly check the lubrication levels and replenish as needed.
  • Inspection: Perform routine visual inspections of the cam rollers to check for any signs of wear, damage, or misalignment. Look for excessive play, deformation, or any irregularities that may affect their performance. If any issues are identified, take appropriate measures such as adjustments, repairs, or replacements.
  • Tightening: Check the fasteners, such as bolts or screws, that secure the cam rollers to the equipment or mounting surfaces. Ensure that they are properly tightened to prevent loosening during operation, which could lead to misalignment or reduced performance.
  • Alignment: Check the alignment of the cam rollers periodically to ensure they are properly aligned with the cam or track they are following. Misalignment can lead to increased wear, reduced accuracy, and decreased lifespan of the cam rollers. Adjust the alignment as necessary to maintain optimal functionality.
  • Load Distribution: Monitor the load distribution among the rolling elements of the cam rollers. Ensure that the load is evenly distributed to prevent overloading or excessive stress on individual rolling elements. Uneven load distribution can lead to premature wear or failure of the cam rollers.
  • Environmental Considerations: Consider the specific environmental conditions in which the cam rollers operate. Take appropriate measures to protect the cam rollers from corrosive substances, extreme temperatures, excessive moisture, or other environmental factors that may affect their performance. Use protective coatings, seals, or covers as needed.
  • Replacement: Cam rollers have a finite lifespan, and eventually, they will need to be replaced. Monitor the wear and performance of the cam rollers over time. When signs of significant wear, damage, or reduced functionality are observed, plan for timely replacement to avoid unexpected failures or disruptions in the operation.

It is important to note that maintenance practices may vary depending on the specific design, materials, and operating conditions of the cam rollers. Therefore, it is recommended to refer to the manufacturer’s guidelines and recommendations for maintenance specific to the cam rollers being used.

By following these maintenance practices and adopting a preventive maintenance approach, operators can ensure the optimal functionality, reliability, and longevity of cam rollers in various applications.

cam roller

How does the design of a cam roller contribute to efficient motion and tracking?

The design of a cam roller plays a crucial role in ensuring efficient motion transmission and tracking along the surface profile of a cam or track. Various design features are incorporated to optimize performance, reliability, and smooth operation. Here’s a detailed explanation of how the design of a cam roller contributes to efficient motion and tracking:

  • Bearing Element: The choice of the bearing element, such as cylindrical rollers, needle rollers, or ball bearings, is a critical design consideration. The bearing element should be selected based on the specific application requirements, including load capacity, speed, and precision. The bearing element allows for smooth rolling motion and efficient load distribution, minimizing friction and wear.
  • Outer Ring Profile: The outer ring of a cam roller has a profile that matches the shape of the cam or track. This design feature ensures accurate tracking and follows the contour of the cam or track surface. The outer ring provides guidance and support to the roller, allowing it to smoothly traverse the cam profile without slipping or deviating from the desired path.
  • Stud or Yoke: The stud or yoke is the component that attaches the cam roller to the moving part of the mechanical system. It is designed to provide secure attachment and proper alignment. The stud or yoke may have additional features such as threaded ends, lubrication provisions, or seals to enhance functionality and ease of maintenance.
  • Roller Retainers: In some cam roller designs, roller retainers are used to maintain proper spacing and alignment of the rollers within the outer ring. These retainers prevent roller skewing and ensure even load distribution among the rollers. By maintaining precise roller alignment, efficient motion transmission and tracking are achieved.
  • Sealing and Lubrication: Proper sealing and lubrication are essential for the efficient functioning of cam rollers. Seals prevent contaminants from entering the bearing and protect against lubricant leakage. Lubrication reduces friction and wear, ensuring smooth rolling motion. The design of cam rollers may include sealing elements and lubrication provisions to facilitate effective sealing and lubrication maintenance.

The careful consideration of these design factors contributes to efficient motion and tracking in cam rollers. When the cam roller is in operation, these design features enable it to smoothly follow the profile of the cam or track, ensuring accurate and reliable motion transmission. Efficient tracking minimizes energy losses, reduces wear, and enhances the overall performance of the mechanical system.

It is important to note that the design of a cam roller should be selected based on the specific requirements of the application. Factors such as load capacity, speed, operating conditions, and precision requirements should be taken into account to ensure optimal performance and longevity of the cam roller in the mechanical system.

In summary, the design of a cam roller, including the bearing element, outer ring profile, stud or yoke, roller retainers, sealing, and lubrication, contributes to efficient motion transmission and tracking. These design features enable smooth rolling motion, accurate tracking along the cam profile, and reliable performance in various mechanical systems.

China supplier Cam Follower Stud Type Trace Roller Bearing  China supplier Cam Follower Stud Type Trace Roller Bearing
editor by CX 2024-04-09

China OEM CHINAMFG CHINAMFG Urb Full Roller Cam Follower Bearing Steel Material Bearing for Motorcycle Part

Product Description

Welcome to HangZhou XIHU (WEST LAKE) DIS. FLIGHT SEIKO MACHINERY CO.,LTD !
We offer a wide variety of precision machining capabilities including high quality precision machined parts,
Mechanical assemblies,and cutom fabrication for automobile,textile machinery,construction machinery etc.
Our manufacturing and process capabilities are ISO9000 Certified.
 

Stud type track rollers is composed of a stud used as the tray of a group of rollers and a thick wall outer ring. The shoulder of the stud and the surface retaining ring on the stud form the guiding faces on the 2 sides of the outer ring. When the curve rollers are running on the plain tray or cam wheel, the inner stress on the rollers will increase due to the deformation of the outer ring. Therefore the rated load should be selected as curve roller column in this operational case.

 

Characteristic of Stud type track rollers

Model

External dimensions

 

D

d

C

B

mm

9185718

35

30

23

62

9185717

65

30

23

41.5

YSN-10A

100

 

48

80

YSN-11A 100   48 68
YSN-03 62 25   16
YSN-16 42 16 9.9 10
YSN-23 120 36   49

Custom size requirement are also available

 

Our advantage:
1.The original 100% factory, more than 10 years’ production experience
2.Produce and process products according to your drawings and requirement.
3.All kinds of surface treatment available,such as anodizing,power coating,painting,polishing and etc.
4.Our professional R&D and QC team can strictily control the product quality to meet your requirement.
5.Our products are of high quality at cheap price,and delivered on time.
 

Manufacturing strength & Vehicle processing line

1.Professional operators

2.Adopting advanced CNC machine tools in Japan

3.Totally enclosed production workshop

4.Experienced managers

5.Digital control production line

6.Advanced level of technology

 

 

Production Detection

1.Complete testing facilities

2.Perfect measurement methods

3.Perfect production detection methods

4.Strong QC team,conduct comprehensive quality control
 

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Rolling Body: Stud Type Track Rollers
The Number of Rows: Stud Type Track Rollers
Outer Dimension: Customized
Material: Customized
Spherical: Stud Type Track Rollers
Load Direction: Stud Type Track Rollers
Samples:
US$ 0/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

cam roller

How does the choice of cam rollers affect the overall performance and reliability of tracking systems?

The choice of cam rollers plays a crucial role in determining the overall performance and reliability of tracking systems. Different factors associated with cam rollers can significantly impact the system’s functionality, efficiency, and longevity. Here’s a detailed explanation of how the choice of cam rollers affects the overall performance and reliability of tracking systems:

  • Load Capacity: The load capacity of cam rollers is a critical consideration. Choosing cam rollers with an appropriate load capacity ensures that the tracking system can handle the required weight and forces without compromising performance or risking component failure. Selecting cam rollers with inadequate load capacity may lead to premature wear, excessive friction, or system instability, affecting the overall reliability and performance.
  • Roller Material and Durability: Cam rollers are available in various materials, such as steel, stainless steel, or plastic. The choice of material impacts the durability, resistance to wear, and overall lifespan of cam rollers. In harsh or corrosive environments, selecting corrosion-resistant materials can enhance the reliability and longevity of the tracking system. Evaluating the operating conditions and selecting cam rollers with appropriate material properties is essential for ensuring long-term performance.
  • Lubrication Requirements: Proper lubrication is crucial for the smooth operation and longevity of cam rollers. Different types of cam rollers have varying lubrication requirements, ranging from self-lubricating options to those that require regular maintenance. Consider the lubrication demands of cam rollers and ensure that they align with the operational needs and maintenance capabilities of the tracking system. Adequate lubrication reduces friction, minimizes wear, and enhances the overall reliability of the system.
  • Accuracy and Precision: The choice of cam rollers can affect the accuracy and precision of the tracking system. Cam rollers with high-quality manufacturing and precision engineering contribute to smoother and more consistent motion. They provide better control over acceleration, deceleration, and dwell periods, resulting in improved tracking accuracy. Selecting cam rollers with the appropriate design and manufacturing tolerances ensures the desired level of precision in tracking applications.
  • Environmental Compatibility: Different tracking systems operate in various environmental conditions, including temperature extremes, dust, moisture, or contaminants. The choice of cam rollers should consider the compatibility with the specific environment in which the tracking system will be utilized. Opting for cam rollers designed to withstand environmental factors enhances the reliability and performance of the system, preventing premature wear or damage due to environmental stressors.
  • Track Configuration: Cam rollers are available in various configurations to accommodate different track types, such as linear tracks, curved tracks, or complex multi-axis tracks. Choosing cam rollers that align with the track configuration required by the application ensures optimal performance and reliability. The compatibility between the cam rollers and the track configuration affects the system’s ability to handle the desired motion patterns, trajectories, and load distribution effectively.
  • Compatibility with Object Characteristics: Cam rollers should be selected based on the characteristics of the objects or components being tracked. Consider factors such as shape, size, weight, and surface properties of the objects. Choosing cam rollers that are compatible with the specific object characteristics ensures proper alignment, secure tracking, and reliable performance. Incorrect sizing or mismatched specifications may lead to tracking errors, poor contact, or even damage to the objects being tracked.
  • Manufacturing Quality and Standards: The overall performance and reliability of cam rollers depend on the manufacturing quality and adherence to industry standards. Choosing cam rollers from reputable manufacturers known for their quality control processes and compliance with relevant standards ensures reliable and consistent performance. High-quality cam rollers are less prone to premature wear, misalignment, or unexpected failures, resulting in improved reliability and overall system performance.

Considering these factors and making an informed choice regarding cam rollers is essential for optimizing the performance, efficiency, and reliability of tracking systems. Thoroughly evaluating the application requirements, environmental conditions, and operational needs will help select cam rollers that are best suited for the specific tracking system, leading to enhanced performance and increased reliability.

cam roller

How do cam rollers contribute to precise and controlled motion in machinery?

Cam rollers play a significant role in ensuring precise and controlled motion in various machinery applications. Their design and functionality contribute to accurate tracking, smooth operation, and controlled movement. Here’s a detailed explanation of how cam rollers contribute to precise and controlled motion in machinery:

  • Cam Profile Following: Cam rollers are specifically designed to follow the profile of a cam or track. The outer ring of the cam roller is shaped to match the contour of the cam surface. As the cam rotates or moves, the cam roller maintains contact with the cam profile, ensuring precise tracking and controlled motion along the desired path. This cam profile following capability enables machinery to achieve accurate and repeatable motion.
  • Rolling Motion: Cam rollers utilize rolling motion to traverse the cam profile. The rolling motion reduces friction compared to sliding or rubbing contact, resulting in smoother operation and improved energy efficiency. The rolling action of cam rollers allows for controlled movement with minimal resistance, ensuring precise motion and minimizing wear and tear.
  • Load Distribution: Cam rollers are designed to distribute the applied load evenly among the rolling elements. This load distribution capability minimizes stress concentrations and prevents excessive wear on individual rollers. By distributing the load effectively, cam rollers contribute to maintaining precise and controlled motion without compromising performance or causing premature failure.
  • High Rigidity: Cam rollers are constructed to provide high rigidity, which is vital for precise and controlled motion. The materials and design of cam rollers ensure minimal deformation or flexing during operation, allowing for accurate positioning and controlled movement. The high rigidity of cam rollers enables machinery to maintain tight tolerances and achieve the desired motion without unwanted deviations.
  • Roller Retainers: Some cam roller designs incorporate roller retainers or cages that hold the rolling elements in place and maintain proper spacing. These retainers prevent roller skewing and ensure controlled movement by guiding the rollers along the cam profile. The use of roller retainers enhances precision and eliminates the risk of roller misalignment, contributing to precise and controlled motion in machinery.
  • Precision Bearings: Cam rollers are equipped with precision bearings that provide smooth rolling motion and reduce internal friction. These bearings are designed to handle both radial and axial loads, ensuring stable and controlled motion in various directions. The precision bearings in cam rollers contribute to the overall precision and controlled movement of the machinery.

By incorporating these design features and functionalities, cam rollers contribute to precise and controlled motion in machinery. They enable accurate tracking of cam profiles, utilize rolling motion with reduced friction, distribute loads evenly, provide high rigidity, use roller retainers for proper alignment, and utilize precision bearings for smooth operation. All these factors work together to ensure precise positioning, controlled movement, and reliable performance in a wide range of machinery applications.

In summary, cam rollers contribute to precise and controlled motion in machinery through their cam profile following capability, rolling motion, load distribution, high rigidity, roller retainers, and precision bearings. These features enable machinery to achieve accurate positioning, smooth operation, and controlled movement, resulting in improved performance and productivity.

cam roller

Can you describe the factors to consider when selecting cam rollers for specific applications?

When selecting cam rollers for specific applications, several factors need to be considered to ensure optimal performance, reliability, and longevity. The suitability of a cam roller for a particular application depends on various parameters and requirements. Here’s a detailed explanation of the factors to consider when selecting cam rollers:

  • Load Capacity: One of the primary considerations is the anticipated load capacity of the cam roller. The cam roller should have sufficient load-carrying capacity to support the expected radial and axial loads in the application. It is important to consider both static and dynamic loads, as well as any potential shock or impact loads that may occur.
  • Speed and Acceleration: The speed at which the cam roller will operate, as well as the acceleration and deceleration rates, should be taken into account. High-speed applications require cam rollers that can accommodate the associated centrifugal forces and provide smooth rolling motion without excessive heat generation. Additionally, the roller should be able to handle the acceleration and deceleration forces without compromising performance.
  • Precision Requirements: Depending on the application, precision requirements may vary. Some applications demand high positioning accuracy and minimal deviation, while others may have looser tolerances. It is important to select a cam roller that can meet the desired precision requirements, ensuring accurate tracking and motion control.
  • Operating Conditions: Consider the operating conditions in which the cam roller will be used. Factors such as temperature, humidity, dust, and corrosive environments can impact the performance and longevity of the cam roller. Choose a cam roller that is designed to withstand the specific operating conditions of the application, ensuring durability and reliability.
  • Lubrication and Maintenance: Proper lubrication is crucial for the smooth operation and longevity of cam rollers. Consider the lubrication requirements of the cam roller and whether it has provisions for effective lubrication. Additionally, assess the maintenance needs and accessibility of the cam roller for periodic inspection, lubrication replenishment, and potential replacement.
  • Mounting and Attachment: Evaluate the mounting and attachment options available for the cam roller. Different applications may require stud-type cam rollers or yoke-type cam rollers, depending on the attachment method and space constraints. Ensure that the chosen cam roller can be securely mounted and aligned with the moving parts of the system.
  • Cost and Availability: Finally, consider the cost and availability of the cam roller. Evaluate the overall cost-effectiveness of the selected cam roller, taking into account its performance, longevity, and maintenance requirements. Additionally, ensure that the chosen cam roller is readily available from reliable suppliers to avoid delays or compatibility issues.

By considering these factors, you can select the most suitable cam roller for a specific application, ensuring optimal performance, reliability, and longevity. It is advisable to consult with manufacturers or industry experts to obtain guidance and recommendations tailored to your specific requirements.

In summary, the factors to consider when selecting cam rollers for specific applications include load capacity, speed and acceleration requirements, precision needs, operating conditions, lubrication and maintenance considerations, mounting and attachment options, as well as cost and availability. Assessing these factors will help in choosing the appropriate cam roller that meets the unique demands of the application.

China OEM CHINAMFG CHINAMFG Urb Full Roller Cam Follower Bearing Steel Material Bearing for Motorcycle Part  China OEM CHINAMFG CHINAMFG Urb Full Roller Cam Follower Bearing Steel Material Bearing for Motorcycle Part
editor by CX 2024-04-08

China Best Sales CHINAMFG CHINAMFG CHINAMFG CHINAMFG CHINAMFG CHINAMFG CHINAMFG One Way Track Roller Needle Roller Bearing Nutr1542 Motorcycle Bearing Cam Follower Bearing Nutr1747 Nutr2052

Product Description

Specifications of Bearing

Product Description of CHINAMFG Cam Follower Bearing 

Inch Needle Roller Bearing Professional Manufacturer Factory (CYR-1-7/8-S/CCYR-1-7/8-S/CYR-2/CYR-2-S/CYR-2-1/4/CYR-2-1/4-S/CYR-2-1/2/CYR-2-1/2-S/CYR-2-3/4)
Inch Track Rollers and Cam Follower Bearing of Professional Manufacturer

Neddle roller bearing of all kinds are our main product and our advantag

CYR-3/4/CYR-3/4-S/CCYR-3/4-S/CYR-7/8/CYR-7/8-S/CCYR-7/8-S/CYR-1/CYR-1-S /CCYR-1-S /CYR-1-1/8/CYR-1-1/8-S/CCYR-1-1/8-S/CYR-1-1/4/CYR-1-1/4-S/CCYR-1-1/4-S/CYR-1-3/8/CYR-1-3/8-S/CCYR-1-3/8-S/CYR-1-1/2/CYR-1-1/2-S/CCYR-1-1/2-S /CYR-1-5/8/CYR-1-5/8-S/CCYR-1-5/8-S/CYR-1-3/4/CYR-1-3/4-S/CCYR-1-3/4-S/CYR-1-7/8/CYR-1-7/8-S/CCYR-1-7/8-S/CYR-2/CYR-2-S/CYR-2-1/4/CYR-2-1/4-S/CYR-2-1/2/CYR-2-1/2-S/CYR-2-3/4/CYR-2-3/4-S/CYR-3/CYR-3-S/CYR-3-1/4/CYR-3-1/4-S

Showing of Bearing

 

Parameters of Bearing

More Details of CHINAMFG Cam Follower Bearing CF11/2S

CCF-3/4-SB CF-1/2 CCFH-3/4-S CCF-11/16-SB CF-4
CF-1-SB CFH-1/2 CCF-7/8-SB CFE-11/16-SB CF-4-B
CF-1/2-SB CF-1/2-B CF-7/8-SB CCFE-11/16-SB CF-4-S
CF-1 1/2-SB CF-1/2-S CF-7/8-S CFH-11/16-SB CF-4-SB
CCYR-1 3/4-S CCF-1/2-S CCF-7/8-S CCFH-11/16-SB CCF-4-S
CCYR-1 5/8-S CFH-1/2-S CFH-2-SB CF-3/4 CCF-4-SB
CFE-2-SB CCFH-1/2-S CFH-2-S CF-3/4-B CFE-4-SB
CYR-3/4S CF-1/2-SB CFH-2 CF-3/4-S CCFE-4-SB
CYR-1-S CCF-1/2-SB CCFH-2-S CF-3/4-SB CFH-4
CYR-5 CFE-1/2-SB CCFH-2-SB CCF-3/4-S CFH-4-S
CYR-5-S CCFE-1/2-SB CFH-2-1/4-S CCF-3/4-SB CFH-4-SB
CCYR-5-S CFH-1/2-SB CCFH-2-1/4-S CFE-3/4-SB CCFH-4-S
CF-3/4 CCFH-1/2-SB CFH-2-1/2-S CCFE-3/4-SB CCFH-4-SB
CF-3/4-B CF-5/8-N CFH-2-1/2-SB CFH-3/4 CYR-4-S
CF-3/4-S CF-5/8-NB CYR-3/4 CFH-3/4-S CCYR-4-S
CF-3/4-SB CF-5/8-NSB CF-1/2-N CFH-3/4-SB CF-5-SB
CCF-3/4-S CF-5/8-NS CF-1/2-NB CCFH-3/4-S CCF-5-SB
CCF-3/4-SB CCF-5/8-NS CF-3-1/4-SB CCFH-3/4-SB CFH-5-SB
CF-1/2-B CCF-5/8-NSB CCF-3-1/4-S CYR-3/4 CCFH-5-SB
CFH-3/4-SB CF-5/8 CCF-3-1/4-SB CYR-3/4-S CCYR-5-S
CF-1/2-NS CFH-5/8 CFE-3-1/4-SB CCYR-3/4-S CF-6-SB
CF-1/2-SB CF-5/8-B CCFE-3-1/4-SB CF-7/8 CCF-6-SB
CF-1/2-NSB CF-5/8-S CFH-3-1/4 CF-7/8-B CFH-6-SB
CCF-1/2-NS CCF-5/8-S CFH-3-1/4-S CF-7/8-S CCFH-6-SB
CCF-1/2-NSB CFH-5/8-S CFH-3-1/4-SB CF-7/8-SB CYR-6-S
CFH-1-3/4-S CCFH-5/8-S CCFH-3-1/4-S CCF-7/8-S CCYR-6-S
CCFH-1-3/4-S CF-5/8-SB CCFH-3-1/4-SB CCF-7/8-SB CCF-9/16-SB
CCFH-1-3/4-SB CCF-5/8-SB CYR-3-1/4 CFE-7/8-SB CYR-7-S
CFH-1-3/4-SB CFE-5/8-SB CYR-3-1/4-S CCFE-7/8-SB CFH-7-SB
CF-1/2-S CCFE-5/8-SB CCYR-3-1/4-S CFH-7/8 CF-3-1/4-S
CFH-1-3/4 CFH-5/8-SB CF-3-1/2 CFH-7/8-S CCFH-3-1/2-SB
CFH-1-5/8-S CCFH-5/8-SB CF-3-1/2-S CFH-7/8-SB CCFH-1-1/2-SB
CFH-1-5/8-SB CF-11/16 CF-3-1/2-B CCFH-7/8-S CFH-3-1/2-S
CFH-1-5/8-SB CFH-11/16 CF-3-1/2-SB CCFH-7/8-SB CFH-3-1/2-SB
CCFH-1-5/8-S CF-11/16-B CCF-3-1/2-S CYR-7/8 CCFH-3-1/2-S
CCFH-1-5/8-SB CF-11/16-S CCF-3-1/2-SB CYR-7/8-S CF-11/16-SB
CCFH-1-1/2-S CCF-11/16-S CFE-3-1/2-SB CCYR-7/8-S CYR-3-1/2
CFH-1-1/2-S CFH-11/16-S CCFE-3-1/2-SB CF-3-1/4 CCYR-3-1/2-S
CFH-1-1/2 CCFH-11/16-S CFH-3-1/2 CF-3-1/4-B CFH-1-5/8

Cam follower roller bearing structure: 
 

Precision P0,p6,p5
Tolerance grade GB/T307.1-205
Greese/Oil As you requirement, such as SRL ,PS2, Alvania R12 and so on
Quality standard ISO 9

We have all kinds of bearings, just tell me your item number and quantity,best price will be offered to you soon
The material of the bearings, precision rating, seals type,OEM service,etc, all of them we can make according to your requirement

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Cage: With Cage
Rows Number: Single
Load Direction: Radial Bearing
Style: With Outer Ring, With Inner Ring
Material: Bearing Steel
Type: Open
Samples:
US$ 20/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

cam roller

What are the signs that indicate a need for cam roller replacement or maintenance, and how can they be diagnosed?

Proper maintenance and timely replacement of cam rollers are essential for ensuring their optimal performance and longevity. Several signs indicate the need for cam roller replacement or maintenance, and diagnosing these signs can help identify potential issues. Here are some common signs and diagnostic methods:

  • Abnormal Noise: Unusual or excessive noise during the operation of cam rollers can indicate problems. Grinding, squeaking, or rattling sounds may suggest issues such as worn bearings, misalignment, or insufficient lubrication. Conduct a thorough inspection and listen for any abnormal noise while the cam rollers are in motion.
  • Irregular Motion: If the cam rollers exhibit irregular or jerky motion instead of smooth and consistent rolling, it may indicate problems. This can be caused by misalignment, damaged cam profiles, worn bearings, or debris accumulation. Observe the motion of the cam rollers carefully to detect any irregularities or inconsistencies.
  • Inconsistent Tracking: Cam rollers should provide accurate and consistent tracking of objects or components along the designated path. If there are deviations or errors in the tracking, it may indicate misalignment, worn cam profiles, damaged rollers, or track irregularities. Monitor the tracking performance of the cam rollers and check for any inconsistencies or deviations from the desired path.
  • Excessive Wear: Visual inspection of the cam rollers can reveal signs of excessive wear. Check for signs such as worn or flattened surfaces, pitting, cracks, or deformation. Excessive wear can occur due to high loads, misalignment, inadequate lubrication, or prolonged usage. Regularly inspect the cam rollers for any visible signs of wear or damage.
  • Uneven Load Distribution: Improper load distribution across the cam rollers can lead to premature wear or failure. Inspect the cam rollers and associated components for any signs of uneven loading, such as uneven wear patterns, excessive wear on specific rollers, or track distortions. Uneven load distribution may result from misalignment, damaged components, or improper installation.
  • Increased Friction: Excessive friction during the rolling motion of cam rollers can impair their performance and lead to accelerated wear. Monitor the rolling motion and check for signs of increased friction, such as resistance, overheating, or uneven movement. Excessive friction can be caused by misalignment, inadequate lubrication, debris accumulation, or worn components.
  • Loss of Efficiency: A decrease in the efficiency of the cam roller system can indicate underlying issues. If the system requires more power, shows reduced speed, or exhibits decreased accuracy compared to its normal operation, it may indicate problems with the cam rollers. Monitor the system’s performance and compare it with the expected efficiency to identify any loss in performance.

When diagnosing these signs, it is important to follow manufacturer guidelines and recommended maintenance procedures. Diagnostic methods may include visual inspection, listening for abnormal sounds, measuring performance parameters, checking alignment, conducting lubrication analysis, or consulting with qualified technicians or maintenance professionals.

Regular maintenance and inspection schedules should be established to monitor the condition of cam rollers. By identifying signs of wear, misalignment, or other issues early on, timely maintenance or replacement can be performed to prevent further damage, maintain optimal performance, and extend the lifespan of the cam roller system.

cam roller

Can you provide examples of products or machinery that commonly use cam rollers?

Cam rollers are widely used in various products and machinery across different industries. Their unique design and functionalities make them suitable for applications that require precise motion, controlled tracking, and efficient operation. Here are some examples of products or machinery that commonly utilize cam rollers:

  • Printing Machinery: Cam rollers are commonly found in printing machinery, such as offset printers, flexographic printers, and digital printers. They are used to precisely guide the movement of paper or printing substrates through the printing process, ensuring accurate registration and consistent print quality.
  • Material Handling Systems: Cam rollers are extensively used in material handling systems, including conveyor systems, packaging equipment, and automated storage and retrieval systems (ASRS). They help in guiding and tracking the movement of items, pallets, or containers, ensuring smooth and controlled transportation within the system.
  • Industrial Robots: Cam rollers play a vital role in industrial robots, particularly in robotic arms and manipulators. They facilitate precise and controlled motion, allowing the robot to perform accurate positioning, pick-and-place operations, and assembly tasks with high repeatability and reliability.
  • Textile Machinery: Cam rollers are commonly utilized in textile machinery, such as weaving looms, knitting machines, and spinning machines. They assist in guiding the movement of yarns, threads, or fabrics, ensuring proper tension and alignment during the manufacturing process.
  • Automotive Manufacturing: Cam rollers are employed in various stages of automotive manufacturing, including assembly lines, paint booths, and body-in-white operations. They contribute to the smooth and precise movement of car bodies, parts, or components, enabling efficient production processes.
  • Packaging Machinery: Cam rollers are commonly integrated into packaging machinery, such as form-fill-seal machines, cartoners, and labeling machines. They assist in guiding the packaging materials, ensuring accurate positioning, and controlled movement during the packaging process.
  • Food Processing Equipment: Cam rollers find applications in food processing equipment, including filling machines, sorting systems, and packaging lines. They aid in the smooth and precise movement of food products, containers, or packaging materials, maintaining the integrity and quality of the processed food items.
  • Medical Devices: Cam rollers are utilized in medical devices and equipment, such as diagnostic machines, laboratory automation systems, and surgical robots. They contribute to the precise movement and positioning required for accurate diagnostic results, sample handling, or surgical procedures.

These examples represent just a few of the many products and machinery where cam rollers are commonly used. Their versatility, precision, and reliability make them suitable for a wide range of applications in industries like printing, material handling, robotics, textiles, automotive manufacturing, packaging, food processing, and medical devices.

In summary, cam rollers are widely employed in various products and machinery across different industries. Their usage in printing machinery, material handling systems, industrial robots, textile machinery, automotive manufacturing, packaging machinery, food processing equipment, and medical devices demonstrates their significance in achieving precise motion, controlled tracking, and efficient operation in diverse applications.

cam roller

Can you describe the factors to consider when selecting cam rollers for specific applications?

When selecting cam rollers for specific applications, several factors need to be considered to ensure optimal performance, reliability, and longevity. The suitability of a cam roller for a particular application depends on various parameters and requirements. Here’s a detailed explanation of the factors to consider when selecting cam rollers:

  • Load Capacity: One of the primary considerations is the anticipated load capacity of the cam roller. The cam roller should have sufficient load-carrying capacity to support the expected radial and axial loads in the application. It is important to consider both static and dynamic loads, as well as any potential shock or impact loads that may occur.
  • Speed and Acceleration: The speed at which the cam roller will operate, as well as the acceleration and deceleration rates, should be taken into account. High-speed applications require cam rollers that can accommodate the associated centrifugal forces and provide smooth rolling motion without excessive heat generation. Additionally, the roller should be able to handle the acceleration and deceleration forces without compromising performance.
  • Precision Requirements: Depending on the application, precision requirements may vary. Some applications demand high positioning accuracy and minimal deviation, while others may have looser tolerances. It is important to select a cam roller that can meet the desired precision requirements, ensuring accurate tracking and motion control.
  • Operating Conditions: Consider the operating conditions in which the cam roller will be used. Factors such as temperature, humidity, dust, and corrosive environments can impact the performance and longevity of the cam roller. Choose a cam roller that is designed to withstand the specific operating conditions of the application, ensuring durability and reliability.
  • Lubrication and Maintenance: Proper lubrication is crucial for the smooth operation and longevity of cam rollers. Consider the lubrication requirements of the cam roller and whether it has provisions for effective lubrication. Additionally, assess the maintenance needs and accessibility of the cam roller for periodic inspection, lubrication replenishment, and potential replacement.
  • Mounting and Attachment: Evaluate the mounting and attachment options available for the cam roller. Different applications may require stud-type cam rollers or yoke-type cam rollers, depending on the attachment method and space constraints. Ensure that the chosen cam roller can be securely mounted and aligned with the moving parts of the system.
  • Cost and Availability: Finally, consider the cost and availability of the cam roller. Evaluate the overall cost-effectiveness of the selected cam roller, taking into account its performance, longevity, and maintenance requirements. Additionally, ensure that the chosen cam roller is readily available from reliable suppliers to avoid delays or compatibility issues.

By considering these factors, you can select the most suitable cam roller for a specific application, ensuring optimal performance, reliability, and longevity. It is advisable to consult with manufacturers or industry experts to obtain guidance and recommendations tailored to your specific requirements.

In summary, the factors to consider when selecting cam rollers for specific applications include load capacity, speed and acceleration requirements, precision needs, operating conditions, lubrication and maintenance considerations, mounting and attachment options, as well as cost and availability. Assessing these factors will help in choosing the appropriate cam roller that meets the unique demands of the application.

China Best Sales CHINAMFG CHINAMFG CHINAMFG CHINAMFG CHINAMFG CHINAMFG CHINAMFG One Way Track Roller Needle Roller Bearing Nutr1542 Motorcycle Bearing Cam Follower Bearing Nutr1747 Nutr2052  China Best Sales CHINAMFG CHINAMFG CHINAMFG CHINAMFG CHINAMFG CHINAMFG CHINAMFG One Way Track Roller Needle Roller Bearing Nutr1542 Motorcycle Bearing Cam Follower Bearing Nutr1747 Nutr2052
editor by CX 2024-04-04

China Standard CF-2 1/4-B Stud Type Track Rollers Cam Follower Bearing For Machine Tools

Product Description

CF-2 1/4-B Stud Type Track Rollers Cam Follower Bearing For Machine Tools

                                                             Application

                        Metals                                                      Mining, Mineral Processing and Cement   
   
                        Railways                                                  Industrial Applications.

                        Material Handling                                     Agriculture

                        Construction                                             Machine Tools
                       
                         Auto Parts                                                Power Generators 

Cam Followers Stud-Type Track Rollers are designed to run on all types of tracks and to be used in cam drives, conveyor systems, etc.

They are based on either needle or cylindrical roller bearings. Instead of an inner ring, they have a threaded CHINAMFG stud (pin)

CF  B serial cam follower bearing Specification

Product Name CFVBR CFVBUUR  Stud Type Track Rollers 
Precision Rating P6, P0, P5, P4, P2
Material Bearing Steel (GCr15)
Clearance C1 C2 C3 
Vibration & Noisy Z1, Z2, Z3 V1, V2, V3
 Features With Axial Guidance, Axial Plain Washers on Both Sides,full complement needle roller set
CFVBR Features  Shiled Type
CFVBUUR Features Sealed Type
Application Machine Tools, Auto Parts, Power Generators,and other Industrial Applications
Certification ISO 9001: 2008
Packing 1. Neutral Packing Bearing 2. Industrial Packing 3. Commercial Packing Bearing 4. Customize
Delivery Time 30 – 45 Days After The Order is Confirmed
Shippment 1. By Sea 2. By Air 3. By Express

 

CF V B UU R
Standard Type Full Complement Type Hexagon Socket Sealed Type Crowned Outer Ring

CF  B serial cam follower bearing Specification

Bearing No. Dimensions (mm) Basic Load Rating(KN) Limited
Speed
Mass
Hexagon Hole Sealed Type D d C B B1 B2 G G1 C Co rpm kg
CF-1/2-N-B CF-1/2-N-SB 12.70 4.83 8.73 22.23 12.70 10-32 6.35 3.44 3.84 12000 0.009
CF-1/2-B CF-1/2-SB 12.70 4.83 9.53 26.19 15.88 10-32 6.35 3.84 4.40 12000 0.571
CF-9/16-B CF-9/16-SB 14.29 4.83 9.53 26.19 15.88 10-32 6.35 4.30 5.30 10000 0.015
CF-5/8-N-B CF-5/8-N-SB 15.88 6.35 10.32 26.99 15.88 1/4-28 7.94 4.72 6.24 8800 0.019
CF-5/8-B CF-5/8-SB 15.88 6.35 11.11 30.96 19.05 1/4-28 7.94 5.20 7.00 8800 0.571
CF-11/16-B CF-11/16-SB 17.46 6.35 11.11 30.96 19.05 1/4-38 7.94 6.50 8.50 8000 0.030
CF-3/4-B CF-3/4-SB 19.05 9.53 12.70 35.72 22.23 6.35 3/8-24 9.53 7.12 10.00 6400 0.037
CF-7/8-B CF-7/8-SB 22.23 9.53 12.70 35.72 22.23 6.35 3/8-24 9.53 7.12 10.00 6400 0.048
CF-1-B CF-1-SB 25.40 11.11 15.88 42.07 25.40 6.35 7/16-20 12.70 10.64 18.50 5200 0.076
CF-1 1/8-B CF-1 1/8-SB 28.58 11.11 15.88 42.07 25.40 6.35 7/16-20 12.70 10.64 18.50 5200 0.087
CF-1 1/4-B CF-1 1/4-SB 31.75 12.70 19.05 51.59 31.75 7.94 1/2-20 15.88 19.20 25.90 4400 0.140
CF-1 3/8-B CF-1 3/8-SB 34.93 12.70 19.05 51.59 31.75 7.94 1/2-20 15.88 19.20 25.90 4400 0.163
CF-1 1/2-B CF-1 1/2-SB 38.10 15.88 22.23 61.12 38.10 9.53 5/8-18 19.05 23.00 32.70 3600 0.235
CF-1 5/8-B CF-1 5/8-SB 41.28 15.88 22.23 61.12 38.10 9.53 5/8-18 19.05 23.00 32.70 3600 0.270
CF-1 3/4-B CF-1 3/4-SB 44.45 19.05 25.40 70.64 44.45 11.11 3/4-16 22.23 28.70 45.40 3200 0.379
CF-1 7/8-B CF-1 7/8-SB 47.63 19.05 25.40 70.64 44.45 11.11 3/4-16 22.23 28.70 45.40 3200 0.426
CF-2-B CF-2-SB 50.80 22.23 31.75 83.34 50.80 12.70 7/8-14 25.40 37.30 65.80 2800 0.640
CF-2 1/4-B CF-2 1/4-SB 57.15 22.23 31.75 83.34 50.80 12.70 7/8-14 25.40 37.30 65.80 2800 0.774
CF-2 1/2-B CF-2 1/2-SB 63.50 25.40 38.10 96.04 57.15 14.29 1-14 28.58 54.00 102.30   1.126
CF-2 3/4-B CF-2 3/4-SB 69.85 25.40 38.10 96.04 57.15 14.29 1-14 28.58 54.00 102.30   1.316
CF-3-B CF-3-SB 76.20 31.75 44.45 108.70 63.50 15.88 1 1/4-12 31.75 72.30 155.00   1.905
CF-3 1/4-B CF-3 1/4-SB 82.55 31.75 44.45 108.70 63.50 15.88 1 1/4-12 31.75 72.30 155.00   2.170
CF-3 1/2-B CF-3 1/2-SB 88.90 34.93 50.80 121.40 69.85 17.46 1 3/8-12 34.93 104.80 196.70   2.878
CF-4-B CF-4-SB 101.60 38.10 57.15 146.80 88.90 19.05 1 1/2-12 38.10 138.00 278.00   4.253
  CF-5-SB 127.00 50.80 69.85 200.00 128.60 22.23 2-12 65.07 214.00 422.00    
  CF-6-SB 152.40 63.50 82.55 236.50 152.40 25.40 2 1/2-12 76.20 276.00 500.00    
  CF-7-SB 177.80 76.20 95.25 292.00 195.25 31.75 3-12 104.80 347.00 665.00    
  CF-8-SB 203.20 82.55 107.95 327.00 215.90 3 1/4-4 108.15 424.00 896.00    
  CF-9-SB 228.60 95.25 120.65 365.10 241.30 3 1/2-4 120.65 521.00 1140.00    
  CF-10-SB 254.00 107.95 133.35 390.50 254.00 3 1/2-4 120.65 605.00 1340.00    

                                                     About Us

HENGLI Machinery Company is a well-established Chinese bearing supplier. We design, manufacture and wholesale bearings. 
Our specialized manufacturer of Spherical Roller Bearing Cylindrical Roller Bearing, XIHU (WEST LAKE) DIS. Rolling Bearing Co., Ltd was
established in 1970 and is accredited by the Chinese Ministry of Machine Building. 

We invested in 2 additional specialized bearing factories, which allow us to provide our clients with top of the line products 
such as Needle Roller Bearings, Cam Follower Bearings, Thrust Bearings, Spherical Plain Bearings, Rod Ends Bearings,
Ball Joint Bearings,Tapered Roller Bearings, Wheel Hub Bearings and Non-Standard Bearings. 

FAQ
Q1 – What is our advantages? 

A – Manufacturer – Do it only with the Best; 

-Your Choice make different. 

Q2 – Our Products

A – Spherical Roller Bearing, Cylindrical Roller Bearing, Needle Roller Bearing, Cam Followers, Thrust Bearing

– Spherical Plain Bearing, Rod End, Ball Joint, Wheel Hub, Tapered Roller Bearing

Q3 – Process of our production

A – Heat Treatment – Grinding – Parts Inspection – Assembly – Final Inspection – Packing

Q4 – How to customize bearing(non-standard) from your company? 

A -We offer OEM, Customized(Non-standard) service and you need to provide drawing and detailed Technical Data. 

Q5 – What should I care before installation? 

A – Normally, the preservative with which new bearings are coated before leaving the factory does not need to be

Removed; It is only necessary to wipe off the outside cylin­drical surface and bore, if the grease is not compatible

With the preservative, it is necessary to wash and carefully dry the bearing. 

-Bearings should be installed in a dry, dust-free room away from metal working or other machines producing

Swarf and dust. 

Q6 – How to stock and maintenance my bearings right? 

A – Do not store bearings directly on concrete floors, where water can condense and collect on the bearing; 

-Store the bearings on a pallet or shelf, in an area where the bearings will not be subjected to high humidity

Or sudden and severe temperature changes that may result in condensation forming; 

-Always put oiled paper or, if not available, plastic sheets between rollers and cup races of tapered roller bearings. 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Rolling Body: Roller Bearings
The Number of Rows: Single
Material: Bearing Steel
Spherical: Non-Aligning Bearings
Load Direction: Radial Bearing
Separated: Unseparated
Samples:
US$ 1/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

cam roller

Are there innovations or advancements in cam roller technology that have emerged recently?

Yes, there have been several innovations and advancements in cam roller technology in recent years. These developments aim to improve performance, durability, efficiency, and versatility of cam rollers in various applications. Here are some notable innovations and advancements in cam roller technology:

  • Advanced Materials: Manufacturers are continually exploring new materials and coatings to enhance the performance and durability of cam rollers. Advanced materials such as ceramic or composite materials with high strength-to-weight ratios and excellent wear resistance are being used to improve the longevity and efficiency of cam rollers. Additionally, specialized surface coatings, such as diamond-like carbon (DLC) coatings or low-friction coatings, are being applied to reduce friction, minimize wear, and optimize performance.
  • Optimized Designs: Cam roller designs have evolved to optimize performance and functionality. Innovative design features, such as optimized cam profiles, improved roller geometries, and enhanced bearing arrangements, are being employed to reduce friction, increase load-carrying capacity, improve tracking accuracy, and minimize noise and vibration. These optimized designs help achieve smoother motion, higher efficiency, and improved overall performance of cam rollers.
  • Lubrication Technologies: Advancements in lubrication technologies are contributing to the efficiency and longevity of cam rollers. Specialized lubricants with enhanced properties, such as higher temperature resistance, extended lubrication intervals, and reduced friction coefficients, are being developed. Self-lubricating cam rollers incorporating solid lubricants or oil-impregnated polymers are also gaining popularity, reducing the need for frequent maintenance and lubrication while ensuring smooth operation.
  • Integrated Sensor Technology: Integration of sensors directly into cam rollers is an emerging trend in recent advancements. Position sensors, force sensors, or temperature sensors can be integrated within the cam roller assembly to provide real-time data on motion, load, or operating conditions. This information enables precise control, condition monitoring, and predictive maintenance of the cam roller system, improving overall performance and reliability.
  • Smart and Connected Features: With the rise of Industry 4.0 and the Internet of Things (IoT), cam rollers are being equipped with smart and connected features. Wireless connectivity, embedded microcontrollers, and communication protocols enable real-time monitoring, remote control, and data exchange with other components or systems. These smart and connected features enhance the functionality, diagnostics, and integration capabilities of cam rollers in automated and interconnected environments.
  • Simulation and Modeling: Advances in computer-aided design (CAD) and simulation tools have facilitated the optimization of cam roller systems. Virtual modeling and simulation techniques help engineers analyze and fine-tune the design parameters, kinematics, and performance characteristics of cam rollers before physical prototyping. This enables faster development cycles, improved performance predictions, and reduced time-to-market for innovative cam roller designs.

These recent innovations and advancements in cam roller technology are driving improvements in performance, efficiency, reliability, and functionality. They are expanding the capabilities of cam rollers and enabling their application in a wider range of industries and challenging environments.

cam roller

What maintenance practices are recommended for cam rollers to ensure optimal functionality?

Proper maintenance is essential for ensuring the optimal functionality and longevity of cam rollers. Regular maintenance practices help prevent premature wear, minimize downtime, and maintain the performance of cam rollers in various applications. Here are some recommended maintenance practices for cam rollers:

  • Cleaning: Regularly clean the cam rollers to remove dust, dirt, and debris that can accumulate on the rolling surfaces. Use a soft brush or compressed air to clean the cam rollers, ensuring that no contaminants hinder their smooth operation.
  • Lubrication: Apply appropriate lubrication to the cam rollers to reduce friction and wear. Use lubricants recommended by the manufacturer, ensuring they are compatible with the materials and operating conditions of the cam rollers. Regularly check the lubrication levels and replenish as needed.
  • Inspection: Perform routine visual inspections of the cam rollers to check for any signs of wear, damage, or misalignment. Look for excessive play, deformation, or any irregularities that may affect their performance. If any issues are identified, take appropriate measures such as adjustments, repairs, or replacements.
  • Tightening: Check the fasteners, such as bolts or screws, that secure the cam rollers to the equipment or mounting surfaces. Ensure that they are properly tightened to prevent loosening during operation, which could lead to misalignment or reduced performance.
  • Alignment: Check the alignment of the cam rollers periodically to ensure they are properly aligned with the cam or track they are following. Misalignment can lead to increased wear, reduced accuracy, and decreased lifespan of the cam rollers. Adjust the alignment as necessary to maintain optimal functionality.
  • Load Distribution: Monitor the load distribution among the rolling elements of the cam rollers. Ensure that the load is evenly distributed to prevent overloading or excessive stress on individual rolling elements. Uneven load distribution can lead to premature wear or failure of the cam rollers.
  • Environmental Considerations: Consider the specific environmental conditions in which the cam rollers operate. Take appropriate measures to protect the cam rollers from corrosive substances, extreme temperatures, excessive moisture, or other environmental factors that may affect their performance. Use protective coatings, seals, or covers as needed.
  • Replacement: Cam rollers have a finite lifespan, and eventually, they will need to be replaced. Monitor the wear and performance of the cam rollers over time. When signs of significant wear, damage, or reduced functionality are observed, plan for timely replacement to avoid unexpected failures or disruptions in the operation.

It is important to note that maintenance practices may vary depending on the specific design, materials, and operating conditions of the cam rollers. Therefore, it is recommended to refer to the manufacturer’s guidelines and recommendations for maintenance specific to the cam rollers being used.

By following these maintenance practices and adopting a preventive maintenance approach, operators can ensure the optimal functionality, reliability, and longevity of cam rollers in various applications.

cam roller

What is a cam roller, and how is it utilized in mechanical systems?

A cam roller, also known as a cam follower or track roller, is a specialized type of roller bearing used in mechanical systems. It is designed to follow the surface profile of a cam or track and transmit motion or force between the cam and a moving component. Here’s a detailed explanation of what a cam roller is and how it is utilized in mechanical systems:

A cam roller consists of a cylindrical roller, needle roller, or ball bearing that is mounted in a stud or yoke. The stud or yoke provides a means of attachment to the moving component of the mechanical system. The roller or bearing element is housed within a thick-walled outer ring, which serves as a guide and support for the roller. The outer ring has a profile that matches the shape of the cam or track over which the cam roller operates.

The primary function of a cam roller is to convert rotary motion into linear motion or vice versa. As the cam or track rotates, the cam roller follows the profile, causing the roller to move along the track. This motion can be utilized in various ways depending on the specific application. Here are some common uses of cam rollers in mechanical systems:

  • Motion Transmission: Cam rollers are often used to transmit motion from a rotating cam to a reciprocating or oscillating component. For example, in engines, cam followers are used to transfer the motion of the camshaft to the valves, opening and closing them at the appropriate timing.
  • Guiding and Support: Cam rollers can also provide guidance and support to moving components in a mechanical system. They help maintain proper alignment and prevent lateral movement or deflection. This is particularly useful in applications such as conveyor systems, where cam rollers guide the movement of belts or chains.
  • Load Bearing: Cam rollers are designed to withstand high loads and provide support to heavy-duty applications. They are often used in machinery and equipment where there is a need for reliable load-bearing capabilities. Examples include construction machinery, material handling equipment, and industrial automation systems.
  • Compensating for Misalignment: In some applications, cam rollers are utilized to compensate for misalignment between components. The rolling motion of the cam follower allows it to adjust and accommodate slight deviations in the cam or track profile, ensuring smooth operation even in imperfect conditions.

The choice of cam roller design, size, and material depends on the specific requirements of the application. Factors such as load capacity, speed, operating conditions, and precision requirements are taken into consideration when selecting the appropriate cam roller. Regular maintenance, including lubrication and inspection of the cam roller, is important to ensure its proper functioning and longevity in the mechanical system.

In summary, a cam roller is a specialized type of roller bearing used in mechanical systems to transmit motion, provide guidance and support, bear loads, and compensate for misalignment. Its ability to follow the profile of a cam or track allows for efficient conversion of rotary motion to linear motion or vice versa. Cam rollers find application in a wide range of industries and play a crucial role in ensuring the smooth and reliable operation of mechanical systems.

China Standard CF-2 1/4-B Stud Type Track Rollers Cam Follower Bearing For Machine Tools  China Standard CF-2 1/4-B Stud Type Track Rollers Cam Follower Bearing For Machine Tools
editor by CX 2024-04-04